avaisyiAiNn

UNIVERSIDAD AUTONOMA DE CHIAPAS

FACULTAD DE CIEN/CIAS EN FisicA v
MATEMATICAS

Estimacion de la temperatura con la ecuacion
del Bio-Calor usando DeepONet

TESIS

QUE PARA OBTENER EL TITULO DE:
LICENCIADO EN FiSICA

PRESENTA:
FRANCISCO DAMIAN ESCOBAR CANDELARIA X200032

DIRECTOR:

Dr. Yofre Hernan Garcia Gomez

Tuxtla Gutiérrez, Chiapas; Octubre de 2025



Dedicatoria

A mis padres y hermanos,
por su apoyo incondicional y absoluta fe en mi. Esta tesis es mi manera de agradecerles
su amor, paciencia y sacrificio.



Agradecimientos

En primer lugar, deseo agradecer de todo corazén a mi director de tesis, el Dr. Yofre
Hernan Garcia Gomez. Gracias por su apoyo y fe, no solo en el presente trabajo sino
también en mi. El tiempo que ha invertido en mi persona ha sido un regalo de lo mas
valioso; gracias a su guia y mentoria he logrado adquirir conocimientos que nunca habria
imaginado alcanzar por mi cuenta. Esta tesis es el fruto directo de su apoyo como tutor
y de la colaboracion entre la escuela de matematicas y la de fisica, por lo que estoy
profundamente agradecido.

Asimismo, quiero expresar mi profundo agradecimiento a mis estimados profesores y
profesoras, pues todos y cada uno de ellos aportaron a mi formacién académica con
pasién y dedicacion genuinas, a veces yendo mas alla del deber para explicar un tema o
un ejercicio con tal de transmitir su vasto conocimiento. Ademas, quiero agradecer al
personal administrativo y de la biblioteca, quienes, ademéas de desempenar con excelencia
su labor, me brindaron su amistad; eso fue un maravilloso regalo que atesoraré en mi
corazon.

Adicionalmente, mi gratitud se extiende a mis maravillosos y amados amigos Wilson,
Noé, Tass, Wicho, Kevin, Yahir, Lalo y Javier. Gracias por su apoyo incondicional
ante todas las adversidades y problemas; su presencia fue fundamental en esta etapa
de mi vida. Agradezco cada risa, momento, conversacion y hasta discusién compartida
con ustedes. Todos y cada uno me inspiraron, alentaron y ensefiaron a crecer no solo
como estudiante, sino como persona; me mostraron su determinacién y voluntad para
no rendirse, pero también que estd bien tomar un descanso y compartir aquello que nos
aqueja con nuestros seres queridos. Son verdaderamente los mejores amigos que pude
desear y su contribucién a este logro es imposible de omitir.

Por ultimo, pero no menos importante, expreso mi profundo agradecimiento a mis padres,
Zoila y Eczar; y a mis hermanos, Eczar y Maria. Su amor y apoyo incondicionales me han
llevado hasta aqui, a una meta que crei tan lejos y que hoy veo realizada. Son incontables
los sacrificios que han realizado en pro de mi bienestar, tanto fisico como mental, cargando
con pesos que en cierto momento me resultaban imposibles de sobrellevar. No tengo
palabras para describir la gratitud que siento hacia ustedes; siempre estaré orgulloso de
ser llamado su hijo y su hermano. Los amo con todo mi corazon.

A todos ustedes, mi mds sincero agradecimiento. Este logro no habria sido posible sin su
apoyo, generosidad y aliento constante.



Tabla de contenidos

Resumen
1. Introduccion
2. Objetivos

2.1. Objetivo general . . . . . . . .. Lo
2.2. Objetivos especificos . . . . . . . ..

Preliminares

Ecuaciones diferenciales parciales

3.1. Ecuacién diferencial parcial lineal . . . . . ... .. ... ... ... ...,
3.2. Solucibn deuna EDP . . . . . . . ... ... .
3.3. Separacién de variables . . . .. .. .. L L oo
3.4. Principio de superposicion . . . . . . ...
3.5. Clasificacién de ecuaciones . . . . . . . . . . . . . ...

Problemas de valores en la frontera

4.1. Ecuaciones clasicas . . . . . . . . . ...
4.2. Condiciones iniciales . . . . . . . . . . .
4.3. Condiciones de frontera, . . . . . . . . . . . ...

Problemas de valor inicial
5.1. Problemas bien planteados . . . . . . . . . ... ... ... ... ...

Método de Crank Nicolson

Redes neuronales

Physics Informed Neural Networks (PINNs)

7.1. Algoritmos de optimizacién . . . . . . . . .. ...
7.1.1. ADAM . ..
7.1.2. L-BFGS . . . . .

7.2. Deepxde . . . . . .

7.3. Ejemplo de resolucion de la ecuacién de Burger 1D con deepxde . . . . . .

10
10
10

11

12
12
12
13
13
14

15
15
16
16

19
21

24



7.4. Comparacién con Redes Neuronales Tradicionales . . . . . . . . . ... ..

8. DeepONet
8.1. Arquitectura . . .

8.2. Ejemplo de resoluciéon de un operador usando DeepONet . . . . . . . . ..
8.3. Comparacién conuna PINN . . . . . . ... 0oL

I1l. Ecuacion del Bio-Calor

Experimento . . . . ..
Trascendencia . . . . . .

9. Forma de la ecuacion

9.1. Versién reducida (adimensionalizada) . . . . . . . ... ... ...
9.2. Condiciones de uso adecuadas . . . . . . . . . ... oo

9.3. Solucién analitica .

9.3.1. Reduccién del problema . . . . . .. ... ... oL
9.3.2. Métododesolucién . . . . . . . ... ...
9.3.3. Solucién mediante series . . . . . . . . ... ... L.
9.3.4. Solucién truncada codificada . . . . . ... .. ...

10. Otras aplicaciones de la ecuacion del bio-calor

IV. Estudio de caso

Hipertermia como opcién terapéutica complementaria en el manejo de cancer .

11. Metodologia

11.1. Aportaciones del modelo . . . . . . . . . ... Lo

11.2. Disefio del modelo

11.3. Implementacién del modelo . . . . . . . . ..o
11.4. Evaluaciéon del modelo . . . . . . . .. .. L Lo Lo
11.5. Comparacion de resultados . . . . . . . . . ..o
11.6. Andlisis y conclusién . . . . . . . . . ...

12.Predicciones del método numeérico
12.1. Andlisis de sensibilidad . . . . . . . . . ...

13. Métricas del modelo

13.1. Gréficas de pérdida del modelo . . . . . . . .. ... ... ... ......
13.1.1. Perdida para el conjunto de entrenamiento . . . ... .. .. ...
13.1.2. Pérdida para el conjunto de prueba . . . . . . ... ... ... ...

13.2. Guardado de datos

35
35
35
40

41
42
42

44
44
45
45
46
47
47
48

50

51
52

54
54
o4
54
95
55
56

57
62



14. Comparacion de resultados
14.1. Comparativa visual de las predicciones . .

14.1.1. Modelo contra resultados de Alessio Borgi (2023) . . . . . ... ..

14.1.2. Modelo contra método numérico .
14.1.3. Modelo contra solucién analitica .
14.2. Validaciones cuantitativas . . . . . . . ..

14.2.1. Modelo contra el método de Crank-Nicolson . . . . . . . . ... ..

14.2.2. Modelo contra la solucién analitica
15. Conclusiones
16. Futuros trabajos de investigacion

Referencias

73
73
73
75
7
79
79
82

86
88

89



Resumen

Asesor: Dr. Yofre Herndn Garcia Gémez

Este trabajo explora el uso de DeepONet para resolver ecuaciones diferenciales parciales
(EDPs), aplicandola a la estimacién de temperatura en tejidos biol6gicos mediante la
ecuacion del bio-calor, en contextos clinicos como la hipertermia oncolégica.

Se comparo el desempefio de DeepONet frente a un método numérico clasico, como
Crank-Nicolson, evaluando precisién mediante métricas de error. La red neuronal fue
entrenada para resolver la EDP del Bio-Calor simplificandola de manera que no se tuviera
en cuenta la fuente metabdlica de calor Q.

Los resultados muestran que DeepONet puede aproximar la solucién eficazmente en
distintos tiempos, con ventajas de generalizacién respecto a redes PINN convencionales,
posicionandose como una herramienta prometedora en el modelado térmico biomédico.



1. Introduccion

El uso de redes neuronales en la resolucién de ecuaciones diferenciales parciales (EDPs)
ha ganado relevancia en la ultima década gracias al desarrollo de técnicas que integran
principios fisicos en el entrenamiento de modelos. Este enfoque, conocido como redes
neuronales informadas por la fisica (PINNs), ha demostrado ser especialmente ftil
en situaciones donde la disponibilidad de datos es limitada y donde las leyes fisicas
subyacentes pueden ser incorporadas como restricciones en la funcién de pérdida (George
Em Karniadakis 2021). En este trabajo se explora una variante mas reciente: DeepONet,
una arquitectura disenada para aprender operadores funcionales, y su aplicacion en la
estimacién de temperatura en tejidos bioldgicos mediante la ecuacién del Bio-Calor(Lu,
Meng, et al. 2021).

La ecuacién del Bio-Calor fue propuesta por Pennes en 1948 con el objetivo de modelar
la transferencia de calor en tejidos vivos, considerando los efectos de conduccién térmica,
metabolismo y perfusién sanguinea (Pennes 1948). Este modelo ha sido ampliamente
utilizado en aplicaciones clinicas como la hipertermia terapéutica, una técnica que consiste
en elevar localmente la temperatura del tejido para mejorar la eficacia de tratamientos
oncolégicos (Instituto Nacional del Cancer 2021). Sin embargo, debido a la complejidad
de las condiciones fisiolégicas y a las propiedades variables de los tejidos, su resolucion
analitica es inviable, y las aproximaciones numéricas, como el método de Crank-Nicolson,
se vuelven indispensables.

En este contexto, surge la oportunidad de aplicar DeepONet como una alternativa
innovadora. A diferencia de una PINN tradicional, que se entrena para resolver una
instancia especifica de una EDP, DeepONet aproxima un operador que puede generalizar
a nuevas condiciones de frontera o iniciales sin requerir reentrenamiento (Lu, Meng,
et al. 2021). Esta caracteristica resulta de gran valor en aplicaciones médicas donde las
condiciones pueden variar entre pacientes o incluso durante un mismo procedimiento.
Ademas, el modelo puede ser entrenado sobre una base de soluciones simuladas, lo que
reduce la necesidad de datos experimentales, dificiles y costosos de obtener en contextos
clinicos (George Em Karniadakis 2021).

El presente trabajo tiene como objetivo comparar la precisién y eficiencia de DeepONet
con el método numérico clasico de Crank-Nicolson en la estimacién de temperatura sobre
un dominio bidimensional. Para ello, se implementé un modelo basado en la version
adimensionalizada de la ecuaciéon del Bio-Calor, y se utilizé la biblioteca DeepXDE para
su entrenamiento (Lu, Meng, et al. 2021). Posteriormente, se evaluaron métricas como
el error medio absoluto (MAE) y el error méximo absoluto (MaxAE), y se analizaron



las predicciones visualmente frente a referencias obtenidas por Alessio Borgi (2023), con
resultados prometedores.

La combinacién de eficiencia, capacidad de generalizacién y adecuacién a condiciones
reales posiciona a DeepONet como una alternativa poderosa frente a métodos clédsicos.
Esta tesis busca sentar las bases para diversificar su uso en escenarios variados e incentivar
su uso en la solucién de operadores. Asi, el trabajo contribuye a la creciente tendencia
de aplicar inteligencia artificial en el &mbito médico con fundamentos sélidos en fisica
matematica.



2. Objetivos

2.1. Objetivo general

Comparar la aproximacién numérica de la solucién de una EDP obtenida del uso de una
red neuronal con arquitectura DeepONet, con aproximaciones numéricas obtenidas de
métodos numéricos clasicos, en el contexto de un estudio médico basado en la EDP del
Bio-Calor, utilizando métricas de error relevantes para evaluar su desempeno.

2.2. Objetivos especificos

1. Comprender y adaptar el uso de las PINNs para la resolucién de PDEs y ODEs,
asi como sus aplicaciones multidisciplinarias.

2. Explorar el uso de DeepONet como alternativa a las PINNs clasicas y determinar
tanto ventajas como desventajas de su implementacion.

3. Evaluar y contrastar la eficacia de la arquitectura de red neuronal artificial
DeepONet con un método numérico de referencia, como el método de Crank
Nickolson.

4. Enmarcar las ventajas/desventajas al implementar un modelo de red neuronal en
un lenguaje de programacién como Python.
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3. Ecuaciones diferenciales parciales

Las EDPs, al igual que las ecuaciones diferenciales ordinarias (EDOs), se clasifican en
lineales y no lineales. De forma andloga a una EDO lineal, la variable dependiente y sus
derivadas parciales en una EDP lineal se elevan tinicamente a la primera potencia (Zill y
Cullen 2008).

3.1. Ecuacion diferencial parcial lineal

Si dejamos que u denote la variable dependiente y que x e y representen las variables
independientes, entonces la forma general de una ecuacién diferencial parcial lineal
de segundo orden estd dada por:

0%u 0%u 9%u ou ou
A—+B—— — +D—+4+FE—+ Fu= 1
922 + 9z 0y + Cé? 5 + 9 + By + Fu =G, (3.1)

donde los coeficientes A, B,C,...,G son funciones de z e y. Cuando G(z,y) = 0, la
Ecuacion 3.1 se denomina homogénea; de lo contrario, es no homogénea. Por ejemplo,
las ecuaciones lineales:

Pu o o
ox2  oy? Y 9x2 Oy

son homogénea y no homogénea, respectivamente.

:;Uy

3.2. Solucién de una EDP

Una solucién de una ecuacién diferencial parcial es una funcién u(x,y) de dos variables
independientes que posee todas las derivadas parciales que aparecen en la ecuaciéon y que
satisface dicha ecuacién en alguna regién del plano xy.

No es lo habitual examinar los procedimientos para encontrar soluciones generales de
ecuaciones diferenciales parciales lineales. No solo porque suele ser dificil obtener una
solucién general de una EDP lineal de segundo orden, sino que una solucién general no
es tan 1til en aplicaciones practicas. Por lo tanto, el enfoque comin es el de encontrar

12



soluciones particulares de las EDPs lineales méas importantes, sin olvidar que a cada
solucién particular le pertenecen un conjunto de condiciones iniciales y de frontera.

3.3. Separacion de variables

Dentro del banco de métodos para encontrar soluciones particulares de una EDP lineal,
uno de los més comunes se llama método de separacién de variables. En este método
buscamos una solucién particular de la forma de un producto de una funcién de = y una
funcién de y:

u(z,y) = X(2)Y (y).

Bajo ciertas condiciones, esta suposicién permite reducir una EDP lineal en dos variables
a dos ecuaciones diferenciales ordinarias (ODEs). Para este fin, observamos que:

ou ou 0*u 0%u

——=XY, —=XY', —S=X"Y, =XV

Ox T Oy Ox? T Oy? ’
donde las comillas denotan derivacién ordinaria.
3.4. Principio de superposicion
Teorema 3.1. 57 uy,uy, ..., u;, son soluciones de una ecuacion diferencial parcial lineal
homogénea, entonces la combinacion lineal

u = Clul + C2U2 + + Ckuk

donde las c;,© =1,2,...,k son constantes. Es también una solucion.

El teorema 3.1 se puede entender como: siempre que tengamos un conjunto infinito
de soluciones wuy,uy, Us, ... de una ecuacion lineal homogénea, podemos construir otra
solucion u mediante la serie infinita:

[ee]
u = E Ckuk.,

k=1

donde las constantes c¢;, con ¢ = 1,2, ..., son coeficientes.

13



3.5. Clasificacion de ecuaciones

Una ecuacion diferencial parcial lineal de segundo orden con dos variables independientes
y coeficientes constantes puede clasificarse en uno de tres tipos. Esta clasificaciéon depende
Unicamente de los coeficientes de las derivadas de segundo orden. Por supuesto, asumimos
que al menos uno de los coeficientes A, B o C es distinto de cero.

Definicién 3.1. La ecuacién diferencial parcial lineal de segundo orden

9%u 9%u 0%u ou ou
A—+ B — +D—+F Fu=
8362+aé)+082+ 5s T Eay TEu=0

donde A, B,C, D, F' son constantes reales, se dice que es:

« Hiperbdlicasi B? —4AC >0,
e Parabédlicasi B?—4AC =0,
o Elipticasi B?—4AC <0.

14



4. Problemas de valores en la frontera

Si, por ejemplo, u(z,t) es una solucién de una EDP, donde x representa una dimension

espacial y t representa el tiempo, entonces es posible prescribir el valor de u, o %, 0 una

combinacion lineal de u y % en un valor = especificado, asi como prescribir u y % en
un instante dado ¢ (normalmente, ¢ = 0). En otras palabras, un problema de valores en
la frontera puede consistir en una EDP, junto con condiciones de frontera y condiciones

iniciales (Zill y Cullen 2008).

4.1. Ecuaciones clasicas

Aplicar el método de separacién de variables para encontrar soluciones en forma de
producto es muy comun con las siguientes ecuaciones cldsicas de la fisica matematica:

0%u  Ou
%u  0%u
27 2 _ 2 7
O0x2  Ot? (42)
u  0%u
952 + 87312 =0 (4.3)

o variantes ligeras de estas ecuaciones. Las EDPs 4.1, 4.2 y 4.3 se conocen, respectivamente,
como la ecuacion del calor unidimensional, la ecuacion de onda unidimensional y la
forma bidimensional de la ecuacion de Laplace. El término “unidimensional” en el caso de
las ecuaciones 4.1 y 4.2 se refiere al hecho de que = denota una variable espacial, mientras
que t representa el tiempo; “bidimensional” en 4.3 significa que tanto x como y son
variables espaciales. Si se compara 4.1-4.3 con la forma lineal en la Definicién 3.1 (donde
t juega el papel del simbolo y), se observa que la ecuacién del calor 4.1 es parabdlica, la
ecuacion de onda 4.2 es hiperbélica y la ecuacién de Laplace 4.3 es eliptica.

15



Seccién transversal de area A

l ~
T
SN Y O B

\/ \/
0 X x+Ax L X

(a) Flujo de calor unidimensional.

u=0"L X

enx =0 enx =L
(b) Cuerda tensada.

Figura 4.1.: Aplicaciones de las ecuaciones 4.1 y 4.2 (Zill y Cullen 2008).

4.2. Condiciones iniciales

Dado que las soluciones de las ecuaciones 4.1 y 4.2 dependen del tiempo ¢, es posible
especificar lo que ocurre en t = 0; es decir, establecer condiciones iniciales (CI).
Si f(z) representa la distribucion inicial de temperatura en la varilla mostrada en la
Figura 4.1a, entonces una solucién u(x,t) de 4.1 debe satisfacer la condicién inicial tnica
u(z,0) = f(z), 0<ax<L.

Por otro lado, para una cuerda vibrante podemos especificar tanto su desplazamiento
inicial (o forma) f(x) como su velocidad inicial g(z). En términos matematicos, buscamos
una funcién u(x,t) que satisfaga 4.2 y las dos condiciones iniciales:

u(z,0) = f(x), % . =g(z), 0<z<L. (4.4)

Por ejemplo, la cuerda podria ser tensada, como se muestra en la Figura 4.1b, o liberada
desde el reposo (g(z) = 0).

4.3. Condiciones de frontera

La cuerda en la Figura 4.1b esté fija al eje x en £ = 0 y x = L para todos los tiempos.
Esto se interpreta a través de dos condiciones de frontera (CF):

u(0,t) =0, w(L,t)=0, t>0.

En éste contexto la funcién f en la Ec 4.4 es continua y, en consecuencia, f(0) =0y
f(L) = 0. En general, existen tres tipos de condiciones de frontera asociadas con las
ecuaciones 4.1, 4.2 y 4.3. En la frontera es posible especificar los valores de una de las
siguientes:

16



ou

(i) u, (ii) o 0 (iii) 0—u+hu, con h constante.
n n

Aqui % denota la derivada normal de u (la derivada de u en direccién perpendicular

a la frontera). Una condicién de frontera del primer tipo (i) es llamada condicién de
Dirichlet; una condicién de frontera del segundo tipo (ii) es llamada condicién de
Neumann; y una condicién de frontera del tercer tipo (iii) es conocida como condicién
de Robin. Por ejemplo, para ¢ > 0 una condicién tipica al extremo derecho de la varilla
de la Figura 4.1a puede ser:

(1)" w(L,t) = ugy, con u, constante

, Ou
(i) = =0
oxl,_;
RN ou
(iii) . = —h(u(L,t) —u,,), con h >0y u,, constantes
=L

La condicién (i)’ simplemente establece que el limite z = L se mantiene, por algin

medio, a una temperatura constante u, durante todo el tiempo ¢ > 0. La condicién (ii)’
indica que el contorno z = L esta aislado. Segin la ley empirica de la transferencia de
calor, el flujo de calor a través del borde (es decir, la cantidad de calor por unidad de
area por unidad de tiempo conducida a través la frontera) es proporcional al valor de
la derivada normal %Z de la temperatura u. Por lo tanto, cuando el limite x = L esta
aislado térmicamente, no fluye calor hacia dentro ni hacia fuera de la varilla, por lo que

oxl,_;
Es posible interpretar (iii)’ como que el calor se pierde del extremo derecho de la varilla
al estar en contacto con un medio, como el aire o el agua, que se mantiene a temperatura
constante. Segun la ley de enfriamiento de Newton, el flujo de calor hacia afuera de la
varilla es proporcional a la diferencia entre la temperatura u(L,t) en la frontera y la
temperatura u,, del medio circundante. Se observa que si se pierde calor por el extremo
izquierdo de la varilla, la condiciéon de contorno es

ou

In - = h(u(0,t) —u,,).

El cambio de signo respecto de (iii)’ corresponde con el supuesto de que la varilla estd a
una temperatura mas alta que el medio que rodea los extremos, de modo que u(0,t) > u,,

17



y u(L,t) > u,,. Parax =0y x = L, las pendientes u,(0,t) y u, (L, t) deben ser positivas
y negativas, respectivamente.

Por supuesto, en los extremos de la varilla se pueden especificar diferentes condiciones al
mismo tiempo. Por ejemplo, podriamos tener

ou
%Fozo y u(L,t) =wuy, t>0.

18



5. Problemas de valor inicial

Las ecuaciones diferenciales son utilizadas para modelar problemas en ciencia e ingenieria
que implican el cambio de una variable con respecto a otra. La mayoria de estos problemas
requieren la solucién de un problema de valor inicial, es decir, la solucién de una ecuaciéon
diferencial que satisface una condicion inicial dada.

En situaciones reales comunes, la ecuacién diferencial que modela el problema es demasiado
compleja para resolverse con exactitud, y se adopta uno de dos enfoques para aproximar
la solucién. El primer enfoque consiste en modificar el problema simplificando la ecuaciéon
diferencial a una que pueda resolverse con exactitud y luego utilizar la solucién de la
ecuacion simplificada para aproximar la solucion del problema original. El otro enfoque
utiliza métodos para aproximar la solucién del problema original. Este es el enfoque
mas comin porque los métodos de aproximacion proporcionan resultados mas precisos e
informacién de error realista (Burden y Faires 2010).

Ejemplo

El movimiento de un péndulo oscilante bajo ciertas suposiciones se describe mediante
la ecuacion diferencial de segundo orden:

d’0 g

— 4+ =sinf =0

a1 ’
donde L es la longitud del péndulo, g ~ 9.81%5 es la constante gravitacional terrestre
y 6 es el angulo que forma el péndulo con la vertical. Si, ademas, especificamos la
posicién del péndulo al inicio del movimiento, (t,) = 6, , y su velocidad en ese
punto, ¢’ (t,) = 6{. Tenemos un problema de valor inicial.

Para dar una idea mas clara acerca de los problemas de valor inicial Burden y Faires
(2010) brinda las siguientes definiciones y teoremas:

Definicién 5.1. Se dice que una funcién f(¢,y) satisface una Condicién de Lipschitz
en la variable 3 en un conjunto D C R? si existe una constante L > 0 tal que

|f(t,y1) — f(t,y0)| < Lly; — vl

donde f(t,y,) y f(t,yy) estdn en D. La constante L es llamada constante de Lipschitz
para f.

19



Definicién 5.2. Se dice que un conjunto D C R? es convexo si para cualesquiera
ft,y1), f(t,ys) € D, entonces ((1 — Aty + Aty, (1 — Ny, + Ayy) también pertenece a D
para cada A € [0, 1].

En términos geométricos, la Definicion 5.2 establece que un conjunto es convexo siempre
que, para cualesquiera dos puntos dentro del conjunto, todo el segmento recto entre ellos
también pertenezca al conjunto Figura 5.1.

—

Convexo No convexo

Figura 5.1.: Ejemplo geométrico de un conjunto convezo y no convexo (Burden y Faires
2010).

Teorema 5.1. Supongamos que f(t,y) estd definida en un conjunto convero D € R?. Si
existe una constante L > 0 con

’gf(t,y)‘ <L, para todo (t,y) € D, (5.1)
Yy

entonces f satisface una condicion de Lipschitz en D en la variable y con una constante
de Lipschitz L.

Como se mostrara en el siguiente teorema, suele ser de gran interés determinar si la
funcién involucrada en un problema de valor inicial satisface una condicién de Lipschitz
en su segunda variable, y la condicion 5.1 suele ser mas facil de aplicar que la definicién.
Cabe destacar, sin embargo, que el Teorema 5.1 solo proporciona condiciones suficientes
para que se cumpla una condicién de Lipschitz.

Teorema 5.2. Supdngase que D = {(t,y)] a <t<b, —oo<y<oo}yquef(ty)es
continua en D. Si f satisface una condicion de Lipschitz en D en la variable y, entonces
el problema del valor inicial

y'(t)=f(t,y), a<t<b, yla)=aqa,
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tiene una solucion unica y(t) para a <t <b.

Ejemplo

Use el Teorema 5.2 para mostrar que hay una tnica soluciéon al problema de valor
inicial:
y'(t) =1+tsin(ty), 0<t<2, y(0)=0.
Soluciéon: Manteniendo a t constante y usando el Teorema de valor medio a la
funcién
f(t,y) =1+ tsin(ty),

notamos que cuando y; < ¥y,, un nimero £ existe en (y;,y,) tal que:

ftys) — f(ty1) _2 _ 42
2 I = (€)= 1 coser).

De este modo:

|f(t,yg) — f(ty1)] = |yo — ylHtQ cos(&t)| < 4lys — v,

y f satisface una condicién de Lipschitz en la variable y con constante de Lipschitz
L = 4. Ademas, f(t,y) es continua cuando 0 <t <2y —oo < y < 0o, por lo que
el Teorema 5.2 implica que existe una solucién tnica para este problema de valor
inicial.

5.1. Problemas bien planteados

Ahora que hemos abordado, hasta cierto punto, la cuestién de cudndo los problemas
de valor inicial tienen soluciones Unicas, podemos pasar a la segunda consideracion
importante: cudndo aproximar la solucién de un problema de valor inicial. Los problemas
de valor inicial obtenidos mediante la observacién de fenémenos fisicos generalmente solo
se aproximan a la situacién real, por lo que necesitamos saber si pequenos cambios en el
planteamiento del problema introducen cambios correspondientemente pequefios en la
solucién (Burden y Faires 2010).

A continuacién se presentan otras definiciones asi como teoremas que brindardn un
conocimiento més sélido acerca de los problemas bien planteados. Se usard como
referencia a Burden y Faires (2010).

Definicion 5.3. Se dice que el problema de valor inicial

WSty as<t<b ) =a, (52)

es un problema bien planteado si:
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 Existe una tnica solucién y(t) para el problema, y

o Existen constantes ¢, > 0 y k£ > 0 tales que para cualquier €, con ¢, > € > 0,
siempre que J(t) sea continua con |§(t)| < € para todo ¢ en [a,b], y cuando |d,| < e,
el problema del valor inicial

© o) 46, a<i<b x(a)=atd, (5.3

tenga una unica solucién z(t) que satisface:
2(8) — y(t)] < ke VEE [a,b],

donde k es conocida como constante de estabilidad.

El problema especificado por la Ecuacién 5.3 se denomina problema perturbado
asociado al problema original Ecuacién 5.2. Se asume la posibilidad de que se introduzca
un error en el planteamiento de la ecuacién diferencial, asi como la presencia de un error
d en la condicién inicial.

Los métodos numéricos siempre se centraran en la solucién de un problema perturbado,
ya que cualquier error de redondeo introducido en la representacién perturba el problema
original. A menos que el problema original esté bien planteado, hay pocas razones para
esperar que la soluciéon numérica de un problema perturbado se aproxime con precisién a
la solucién del problema original.

Teorema 5.3. Supongamos D = {(t,y)| a <t<b, —oo<y<oo}. Sif es continua
y satisface una condicion de Lipschitz en la variable y en el conjunto D, entonces el
problema de wvalor inicial
dy
o =1y, a<t<b, yla)=a

es bien planteado.

Ejemplo
Demostrar que el problema de valor inicial

d

dit/:y—t%rl, 0<t<2 y(0)=0.5,
estd bien planteado en el dominio D = {(t,y) | 0<t<2 y —oo<y< 00}.
Solucién: Dado que

‘8(y—t2+1)

=1]=1 4
5 ==t (5.4

el Teorema 5.1 implica que la funcién f(t,y) = y — t? + 1 satisface una condicién
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de Lipschitz en y sobre D con constante de Lipschitz igual a 1. Ademaés, como f es
continua en D, el Teorema 5.3 garantiza que el problema esta bien planteado.
A modo de ilustracién, consideremos ahora la solucion del problema perturbado:

d
ﬁzz_t2+1+6’ 0<t<2, 2z(0)=0.5+9,, (5.5)

donde 0 y &, son constantes pequenas, las soluciones respectivas de las ecuaciones
5.4 v 5.5 son:

y(t) = (t+1)% — 0.5¢"

2(t)=(t+1)>+ (6 +6,—0.5)e" — 6
Sea e un ndimero positivo. Si |0] < ey |dy| < €, entonces
ly(t) — 2(t)] = |(d + Gg)e" — 8] < [0 + dple? + [d] < (2¢* + L)e,

para todo t. Esta desigualdad demuestra que 5.4 estd bien planteado, con una
constante de estabilidad k = 2e? + 1 para cualquier ¢ > 0.
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6. Método de Crank Nicolson

El algoritmo introducido por J. Crank y P. Nicolson (Crank-Nicolson) en 1947
representa un esquema numérico ampliamente utilizado para resolver ecuaciones
diferenciales parciales de tipo parabdlico, como la ecuacién de calor. Para comprender
su fundamento, resulta ilustrativo considerar el problema de determinar la evolucion
temporal de la temperatura en una varilla metalica. Dado que la temperatura en cada
punto varia de manera continua, es necesario discretizar el problema para su tratamiento
computacional, lo que implica representar la varilla mediante un conjunto discreto de
puntos y el tiempo mediante una secuencia de pasos finitos (Zill y Cullen 2008).

En este marco, las estrategias de solucion numeérica se clasifican principalmente en dos
categorias. Por un lado, los métodos explicitos calculan el estado futuro del sistema a
partir exclusivamente de informacién del estado presente, lo que los hace conceptualmente
sencillos y computacionalmente eficientes por paso de tiempo. Sin embargo, presentan
una limitacién significativa: su estabilidad depende criticamente del tamano del paso
temporal. Si este paso excede un umbral critico, la solucién numérica puede volverse
inestable, manifestando oscilaciones no fisicas que divergen hacia infinito (Burden y Faires
2010).

Por otro lado, los métodos implicitos superan esta restriccion de estabilidad al establecer
una dependencia entre el estado futuro de un punto y el de sus vecinos en el mismo
instante futuro. Esta caracteristica garantiza estabilidad incondicional para una gama
mas amplia de parametros, pero conlleva una mayor complejidad computacional, ya que
requiere resolver un sistema de ecuaciones acoplado en cada paso de tiempo (Burden y
Faires 2010).

El método de Crank-Nicolson surge como un esquema hibrido que sintetiza las ventajas
de ambos enfoques. Se fundamenta en promediar la discretizacién espacial de la ecuaciéon
diferencial entre el instante de tiempo actual (n) y el futuro (n + 1). Esta estrategia de
promediado le confiere dos propiedades clave (Zill y Cullen 2008):

1. Estabilidad Incondicional: A diferencia de los métodos explicitos, el esquema
de Crank-Nicolson permanece estable para cualquier tamafnio de paso temporal, lo
que permite simulaciones mas rapidas sin riesgo de divergencia.

2. Precision de Segundo Orden: Al ser un método de segundo orden en tiempo, el
error de truncamiento local se reduce mas raticamente al disminuir el paso temporal,
lo que se traduce en una mayor precision global de la solucién numérica comparado
con métodos de primer orden.
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En esencia, el algoritmo consiste en sustituir la segunda derivada parcial en c% = %7:

por el promedio de dos cocientes de diferencias centrales, uno evaluado en ¢ y el otro en

t+ k:

¢ [u(z+ h,t) —2u(z,t) + u(z — h,t)
2[ h2 ]+
46 [u(w+h,t+k)—2u(x,t+k‘)—i—u(a:—h,t—l—k)] (6.1)

2 h?

1
= %[u(x, t+k)—u(z,t)]

si se define A = Z—’; y

u(x + h,t) = Uiy s u(z,t) =u u(x — h,t) = Ui s

159
w(@+ht+k)=uq 01, ul@t+k)=u 0, w@e—ht+k)=u_q; .,

es posible reescribir a la Ec. 6.1 como:

—Ui_q 1 T O g — Uiy i = Ui — By + U, (6.2)

donde a =2(1+3), 8=2(1—75), j=0,1,..,m—1, i=0,1,...,n—1.

Para cada eleccion de j, la ecuacion diferencial Ec. 6.2 para i =0,1,....n—1dan—1
ecuaciones en n—1 incognitas u; ;. ;. Debido a las condiciones de contorno preestablecidas,
los valores de u; ;1 se conocen para i = 0 y para ¢ = n. Por ejemplo, en el caso n = 4,
el sistema de ecuaciones para determinar los valores aproximados de u en la linea de
tiempo (j+ 1) es:

—Ug j1 Uy i — Uy g =Ug = Buy g
—Uq 1 QU g — Uz g U — BUg Uy

—Ug i T QU3 G — Uy g U ﬁu?,,j +ug ;

reordenando se llega a

QUy ;41 — U441 =b
—Upji QU — Uz =by (6.3)
up i1+ oaug gy = b3

donde

by = uy j — Buy j + ug ; + Ug i1
by = ug j — Puy ; +uy j,

by = uyj;— Pugj+ ugj + Uy -
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En general, si utilizamos la ecuacién diferencial Ec. 6.2 para determinar valores de u
en la linea de tiempo (j — 1), es necesario resolver un sistema lineal AX = B, donde la
matriz de coeficientes A es una matriz tridiagonal,

a -1 0 0 0 0 0
1 a -1 0 0 0 0
0 -1 a -1 0 0 0

A=]0 0 -1 a -1 0o 0|,
0O 0 0 0 0 a —1
0O 0 0 0 0 ~1 a

v las componentes de la matriz columna B son

by = uy j — Buy j + ug ; + g jyq
by = uz j — Bug ; +uy 5,

by = uy j — Pug ; + Uy,

b1 = Uy j— By j Uy o+ Up -
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7. Physics Informed Neural Networks
(PINNs)

Las Physics-Informed Neural Networks (PINNs) son un enfoque innovador que combina
redes neuronales con ecuaciones diferenciales gobernantes para resolver problemas
complejos de fisica (Blechschmidt y Ernst 2021). A diferencia de métodos tradicionales, las
PINNs incorporan directamente las ecuaciones fisicas en su funcién de pérdida mediante
diferenciacién automatica, lo que permite minimizar simultdneamente el error en los
datos y el residual de las PDEs (George Em Karniadakis 2021). Esta caracteristica las
hace particularmente valiosas en escenarios con datos limitados, donde el conocimiento
fisico actiia como un regularizador efectivo. La capacidad de aproximacién de las PINNs
se fundamenta en el teorema de aproximacién universal de las redes neuronales, adaptado
para incorporar restricciones fisicas a través de términos de penalizacion en la funcion de
optimizacion (George Em Karniadakis 2021).

como ejemplo, se considera la ecuacion de Burgers para viscocidad:

ou ou 0%u

ot T Vor Vo2

con una condicién inicial adecuada y condiciones de contorno de Dirichlet. En la
Figura 7.1, la red izquierda (physics-uninformed) representa el sustituto de la solucién
de EDP wu(z,t), mientras que la red derecha (physics-informed) describe el residuo de
EDP % + u‘g—’; — u% = 0. La funcién de pérdida incluye una pérdida supervisada de
las mediciones de datos de u de las condiciones iniciales y de contorno, y una pérdida no
supervisada de EDP:

L = WyataLdata T WppELPDE (7.1)

donde:
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’CPDE =

N () )
Nopp & \ 0t T tg) T UG it oz2 Lirli

Aqui, (z;,t;) representan puntos donde se conocen valores de la solucién y (z;,t;) son
puntos interiores del dominio. Los pesos wg,, ¥ Wppg equilibran la contribucion de cada
término. La red se entrena minimizando £ usando optimizadores como Adam o L-BFGS

hasta alcanzar un umbral ¢ (George Em Karniadakis 2021).

Este enfoque permite resolver EDPs (clasicas, fraccionarias o estocdsticas) sin mallas,
en dominios complejos o con datos escasos y ruidosos, siendo una herramienta flexible y
poderosa para la modelacién cientifica.

7.1. Algoritmos de optimizacion

Un algoritmo de optimizacién busca minimizar o maximizar una funcién objetivo
ajustando sus pardmetros de manera iterativa. Son esenciales en el entrenamiento
de redes neuronales y otros modelos de aprendizaje automatico (Kingma y Ba 2014).

7.1.1. ADAM

Adaptive Moment Estimation (ADAM) combina estimaciones de primer y segundo
momento del gradiente para adaptar las tasas de aprendizaje por pardametro. Utiliza
promedios moviles exponenciales de gradientes y gradientes al cuadrado, corregidos por
bias, lo que lo hace eficiente en problemas con gradientes ruidosos o dispersos. Es robusto
y requiere poco ajuste hiperparamétrico (Kingma y Ba 2014).

7.1.2. L-BFGS

Limited-memory BFGS (L-BFGS) es un método quasi-Newton que aproxima la inversa
del Hessiano usando un historial limitado de gradientes y actualizaciones de pardmetros.
Evita el costo computacional de almacenar matrices completas, lo que lo hace viable para
problemas de alta dimensionalidad. Es especialmente 1til en optimizaciéon batch o con
gradientes estables (Goldfarb, Ren, y Bahamou 2016).
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INN(x, t; 6

,,,,,,,,,,,,

Figura 7.1.:

)

N
<>4— Loss +———
Done Y

El algoritmo de una PINN. Se construye una red neuronal (NN) u(x, t; 6)
donde 6 representa el conjunto de pesos entrenables w y sesgos b, y o
representa una funcién de activacion no lineal. Especifique los datos de
medicién z;,1;,u; para u y los puntos residuales z;,¢; para la EDP. Se
especifica la pérdida £ en la Ecuaciéon 7.1 sumando las pérdidas ponderadas
de los datos y la EDP. Entrene la NN para encontrar los mejores parametros

0* minimizando la pérdida £ (George Em Karniadakis 2021).
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7.2. Deepxde

DeepXDE es una biblioteca en Python de aprendizaje profundo disefiada para resolver
ecuaciones diferenciales, incluyendo ecuaciones diferenciales parciales (PDEs), ecuaciones
integro-diferenciales (IDEs) y ecuaciones diferenciales estocédsticas (SDEs), utilizando
redes neuronales informadas por la fisica (PINNs). Combina técnicas de aprendizaje
automatico con principios fisicos al incorporar las ecuaciones diferenciales directamente
en la funcién de pérdida de la red neuronal, aprovechando la diferenciacién automética
para calcular derivadas de manera precisa y eficiente (Lu, Meng, et al. 2021).

7.3. Ejemplo de resolucién de la ecuacion de Burger 1D con
deepxde

Dada la ecuacién:

ou ou 0%u

a‘[; 83’; = ’U@, T € [_1,1], t € [0, 1},

con la condicién de frontera de Dirichlet y condicién inicial:

u(—1,t) =u(l,t) =0, wu(z,0)=—sin(rz).

import deepxde as dde
import numpy as np

# Definir una funcidén para cargar los datos
def gen_testdata():
data = np.load("data/Burgers.npz")
t, x, exact = data["t"], data["x"], data["usol"].T
xx, tt = np.meshgrid(x, t)
X = np.vstack((np.ravel(xx), np.ravel(tt))).T
y = exact.flatten() [:, Nonel
return X, y

# Definir la PDE
def pde(x, y):

dy_x = dde.grad.jacobian(y, x, i=0, j=0)
dy_t = dde.grad.jacobian(y, x, i=0, j=1)
dy_xx = dde.grad.hessian(y, x, i=0, j=0)

return dy_t + y * dy_x - 0.01 / np.pi * dy_xx

# Definir los dominios espacial, temporal y juntarlos
geom = dde.geometry.Interval(-1, 1)

timedomain = dde.geometry.TimeDomain(0, 0.99)

geomtime = dde.geometry.GeometryXTime (geom, timedomain)

# Definir la condicidén de frontera
bc = dde.icbc.DirichletBC(
geomtime,
lambda x: O,
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lambda _, on_boundary: on_boundary)

# Definir la condicién inicial
ic = dde.icbc.IC(

geomtime,
lambda x: -np.sin(op.pi * x[:, 0:1]),
lambda _, on_initial: on_initial

# Definir la cantidad de puntos en el dominio
data = dde.data.TimePDE(

geomtime, pde, [bc, ic],

num_domain=2540,

num_boundary=80,

num_initial=160,

num_test=300
)

# Definir la arquitectura de la red, asi como

# su funcién de activacién y el inicializador

net = dde.nn.FNN([2] + [20] * 3 + [1], "tanh", "Glorot normal")
model = dde.Model(data, net)

# Compilar el modelo y entrenarlo

model.compile("adam", lr=1e-3)

losshistory, train_state = model.train(iterations=3000)
model.compile ("L-BFGS")

losshistory, train_state = model.train()
#dde.saveplot(losshistory, train_state, issave=False, isplot=True)

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

X, y_true = gen_testdata()
y_pred = model.predict(X)
f = model.predict (X, operator=pde)

# Extraer componentes de X
x_coords = X[:, 0] # coordenadas x (espacio)
time = X[:, 1] # coordenadas t (tiempo)

# Crear figura con dos subgraficos 3D

fig = plt.figure(figsize=(14, 8), constrained_layout=True)
axl = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot (122, projection='3d"')

# Calcular limites comunes para los ejes z
z_min = min(y_true.min(), y_pred.min())
z_max = max(y_true.max(), y_pred.max())

# Grafico 1: Valores reales
scl = axl.scatter(x_coords, time, y_true, c=y_true,
cmap='viridis', marker='o', vmin=z_min, vmax=z_max)
axl.set_xlabel('Posicién (x)')
axl.set_ylabel('Tiempo (t)')
axl.set_zlabel('u(x,t)")
axl.set_title('Valores reales de u(x,t)')
axl.set_zlim([z_min, z_max])
axl.set_box_aspect (None, zoom=0.9)

32



# Grafico 2: Valores predichos
sc2 = ax2.scatter(x_coords, time, y_pred, c=y_pred,
cmap='viridis', marker='""', vmin=z_min, vmax=z_max)
ax2.set_xlabel('Posicién (x)')
ax2.set_ylabel('Tiempo (t)')
ax2.set_zlabel('u(x,t)")
ax2.set_title('Valores predichos de u(x,t)')
ax2.set_zlim([z_min, z_max])
ax2.set_box_aspect (None, zoom=0.75)

cbar = fig.colorbar(scl, ax=(axl,ax2),

shrink=0.9, aspect=90,

pad=0.1, orientation='horizontal')
cbar.set_label('Magnitud de u(x,t)"')
plt.show()

print ("Error relativo L2:", dde.metrics.l2_relative_error(y_true, y_pred))

Valores reales de u(x,t) Valores predichos de u(x,t)

-1.00 -0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Magnitud de u(x,t)

Figura 7.2.: Comparaciéon entre solucién real y prediccién de la red neuronal para la
ecuacion de Burger 1D. Debido a su naturaleza unidimensional, es posible
plasmar en un eje al tiempo (t) y representar a la funcién a lo largo de éste
como una serie de fotos para un instante ¢ dado.

Error relativo L2: 0.03250306476857025
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7.4. Comparacion con Redes Neuronales Tradicionales

Mientras que las redes neuronales tradicionales dependen exclusivamente de grandes
volumenes de datos etiquetados para su entrenamiento (George Em Karniadakis 2021),
las PINNs integran el conocimiento fisico como parte esencial de su arquitectura
(Blechschmidt y Ernst 2021). Esta diferencia clave permite a las PINNs generar
soluciones fisicamente consistentes incluso con datos escasos, evitando el sobreajuste
comun en enfoques puramente basados en datos. Otra ventaja significativa de las PINNs
es su naturaleza mesh-free, que contrasta con los métodos numéricos tradicionales
como FEM (Finite Element Method) o FDM (Finite Difference Method) que requieren
discretizaciéon espacial. Sin embargo, el entrenamiento de PINNs puede ser méas desafiante
debido a la necesidad de optimizar multiples objetivos simultdneamente (ajuste a datos
y cumplimiento de leyes fisicas) (Blechschmidt y Ernst 2021; George Em Karniadakis
2021).
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8. DeepONet

DeepONet (Deep Operator Network) es una arquitectura de red neuronal profunda
diseniada para aprender operadores no lineales que mapean funciones de entrada a
funciones de salida. A diferencia de las redes convencionales que aprenden funciones
escalares, DeepONet se enfoca en representar operadores completos, como soluciones de
ecuaciones diferenciales, a partir de datos observados o simulaciones numéricas (Lu, Jin,
et al. 2021).

8.1. Arquitectura

La arquitectura de DeepONet estéd compuesta por dos redes principales: la red de branch
y la red de trunk. La red branch procesa las evaluaciones discretas de la funcién de
entrada (por ejemplo, condiciones iniciales o de frontera), mientras que la red trunk recibe
como entrada los puntos del dominio donde se desea evaluar la funcién de salida. La
salida final se obtiene mediante el producto punto de los vectores generados por ambas
redes, lo que permite representar operadores complejos con alta generalizacién a nuevos
datos (Lu, Jin, et al. 2021).

8.2. Ejemplo de resoluciéon de un operador usando DeepONet

Se resolvera el operador

G:f—-u

para el problema unidimensional de Poisson:
con la condicién de frontera de Dirichlet

u(0) = u(1) =0

doénde el término f representa a una funcién continua arbitraria.
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Figura 8.1.: Ilustraciones del planteamiento del problema y arquitectura

DeepONet que conducen a una buena generalizacién. a) Para
que la red aprenda un operador G : u — G(u) se necesita la entrada
[u(zy),u(xy), ..., u(z,,)] vy la entrada y. b) Tustracién de los datos de
entrenamiento. Para cada funcién de entrada u, se requiere el mismo niimero
de evaluaciones en los mismos sensores dispersos z, zy, ..., Z,,. Sin embargo,
no se impone ninguna restriccién sobre el niimero ni las ubicaciones para la
evaluacién de las funciones de salida. ¢) La DeepONet stacked se inspira
en el Teorema de aproximacién universal para operadores y consta
de una red Trunk y p redes Branch apiladas. La red cuya construccion se
inspira en el mismo teorema es una DeepONet stacked formada al elegir la
red Trunk como una red de una capa de ancho p y cada red Branch como una
red de una capa oculta de ancho n. d) La red DeepONet unstacked se inspira
en el Teorema general de aproximacién universal para operadores y
consta de una red Trunk y una red Branch. Una red DeepONet unstacked
puede considerarse como una red DeepONet stacked, en la que todas las
redes Branch comparten el mismo conjunto de pardmetros (Lu, Jin, et al.
2021).
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import deepxde as dde
import matplotlib.pyplot as plt
import numpy as np

# Seed
dde.config.set_random_seed(123)

# Poisson equation: -u_xx = f

def equation(x, y, f):
dy_xx = dde.grad.hessian(y, x)
return -dy_xx - f

# Domain is interval [0, 1]
geom = dde.geometry.Interval(0, 1)

# Zero Dirichlet BC
def u_boundary(_):
return O

def boundary(_, on_boundary):
return on_boundary

bc = dde.icbc.DirichletBC(geom, u_boundary, boundary)

# Define PDE
pde = dde.data.PDE(geom, equation, bc, num_domain=100, num_boundary=2)

# Function space for f(x) are polynomials
degree = 3
space = dde.data.PowerSeries(N=degree + 1)

# Choose evaluation points
num_eval_points = 10
evaluation_points = geom.uniform_points(num_eval_points, boundary=True)

# Define PDE operator
pde_op = dde.data.PDEOperatorCartesianProd(
pde,
space,
evaluation_points,
num_function=100,
num_test=20

)

# Setup DeepONet
dim_x = 1

p = 32

net = dde.nn.DeepONetCartesianProd(
[num_eval_points, 32, p],
[dim_x, 32, p]l,
activation="tanh",
kernel_initializer="Glorot normal",

)

# Define and train model

model = dde.Model(pde_op, net)
dde.optimizers.set_LBFGS_options(maxiter=1000)
model.compile("L-BFGS")

model.train()

# Plot realisations of f(x)
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n=3
features = space.random(n)
fx = space.eval_batch(features, evaluation_points)

X
y

geom.uniform_points (100, boundary=True)
model .predict ((fx, x))

# Setup figure

fig = plt.figure(figsize=(7, 8))

plt.subplot(2, 1, 1)

plt.title("Ecuacién de Poisson: término f(x) y solucidén u(x)")
plt.ylabel("f(x)")

z = np.zeros_like(x)

plt.plot(x, z, "k-", alpha=0.1)

# Plot source term f(x)
for i in range(n):
plt.plot(evaluation_points, fx[i], "--")

# Plot solution u(x)
plt.subplot(2, 1, 2)
plt.ylabel("u(x)")
plt.plot(x, z, "k-", alpha=0.1)
for i in range(n):

plt.plot(x, y[il, "-")
plt.xlabel("x")

plt.show()
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Ecuacién de Poisson: término f(x) y solucién u(x)
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Figura 8.2.:
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Soluciones halladas por la red neuronal, en la parte superior las funciones
arbitrarias f(x), mientras que en la parte inferior esta su soluciéon u(x), el
color representa la relacion término-solucion.
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8.3. Comparacion con una PINN

En contraste con una red PINN convencional (Physics-Informed Neural Network), que
resuelve una instancia especifica de una ecuacién diferencial para un conjunto dado de
condiciones, DeepONet aproxima el operador general que resuelve varias instancias a la
vez. Mientras que una PINN debe ser reentrenada para cada nuevo problema, DeepONet,
una vez entrenado, puede predecir soluciones rapidamente para multiples condiciones
nuevas. Esto lo hace especialmente eficiente en aplicaciones donde se requiere realizar
inferencias repetidas, como en control o diseno inverso (Kumar et al. 2024).
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Part |l

Ecuacion del Bio-Calor
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La ecuacién del bio-calor, formulada por Pennes (1948), surgi6 de su estudio pionero
“Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”.
Publicado en el Journal of Applied Physiology, este trabajo fue el primero en cuantificar la
interaccion entre la temperatura arterial y tisular en humanos. Pennes combiné principios
termodinamicos con mediciones experimentales en el antebrazo, estableciendo un modelo
matematico que relacionaba el flujo sanguineo, la produccién metabdlica de calor y la
conduccién térmica en tejidos.

Experimento

Durante su estudio, Pennes disefié un experimento riguroso para medir la temperatura
interna del antebrazo humano. Utiliz6 termopares tipo “Y” insertados transversalmente en
la musculatura del antebrazo mediante una aguja estéril, como se ilustra en la Figura 8.3.
Esta configuracién permitia capturar un perfil térmico a lo largo del eje transversal,
minimizando interferencias derivadas del contacto externo o la conduccion axial no
deseada.

La técnica experimental buscé méaxima precisién geométrica y térmica: los termopares eran
fijados con tensién controlada mediante un sistema mecanico que aseguraba trayectorias
rectas y repetibles dentro del tejido. La insercién se realizaba con anestesia tépica
minima y bajo condiciones ambientales estables, lo cual garantizaba que los gradientes
de temperatura registrados fueran atribuibles principalmente al metabolismo local y al
efecto del flujo sanguineo arterial.

Trascendencia

El modelo de Pennes simplificé la complejidad biolégica al asumir un flujo sanguineo
uniforme y una transferencia de calor proporcional a la diferencia entre la temperatura
arterial y la tisular. Aunque posteriores investigaciones refinaron sus supuestos, su
ecuacién sigue siendo un referente en bioingenieria térmica. Su trabajo no solo sentd
las bases para aplicaciones clinicas, como la hipertermia oncoldgica, sino que también
inspir6 avances en el estudio de la termorregulacién humana y el diseno de dispositivos
médicos.
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Figura 8.3.: a) Posicién del brazo derecho (vista superior). La linea horizontal II indica el
nivel de la figura c). b) Posicién del brazo derecho (vista lateral). ¢)Seccién
transversal anatémica del antebrazo en el nivel II (Pennes 1948).
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9. Forma de la ecuacion

La ecuacién diferencial de bio-calor de Pennes (1948) modela la transferencia de calor en
tejidos bioldgicos, integrando efectos de conduccion, perfusion sanguinea y metabolismo.

Su forma general es:

orT 0T

pca = keﬁ@ - pbcbwb(T - Ta) + Qa T e Qa te [O7tf] (91)

Tabla 9.1.: Tabla de nomenclaturas de la Ecuaciéon 9.1.

Simbolo Descripcion Unidades
T Temperatura del tejido °C
) Densidad del tejido %
c Calor especifico del tejido = '{C
kog Conductividad térmica %
Pb Densidad de la sangre %
Cp Calor especifico de la sangre ]@%C
Wy Tasa de perfusién sanguinea 1/s
T, Temperatura arterial °C
9 =gq,, +¢q, Fuente de calor %
G Metabolismo nLA
qp Externa @3
9.1. Versién reducida (adimensionalizada)
Mediante escalamiento:
T’ x t
7"=T-T, §=—— X=— = — 9.2
a Ty —T, L, ¢ (92)
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Tabla 9.2.: Tabla de nomenclatura de las relaciones para escalamiento.

Simbolo  Descripcién Unidades
L, Longitud caracteristica del dominio m
tr Tiempo final de simulacién S

la Ecuacion 9.1 se convierte en:

67_0 = alaXXQ —_— a2W9 + 0/3

para una dimensién espacial; para el caso dos dimensional se tiene:

87.0 == alv20 i (I2W0 "‘ CLS (93)

Parametros adimensionales:
t e e . k

- ay = =L (difusividad térmica o = =),
alLg

pc
t.c
- — I
ay = 5o
t,0
- Q9 = —F777 7 -
3 pC<TM7Ta>

- W = pyw,: Tasa volumétrica de perfusion (kg/m? - s).

Cabe decir que se model6 el caso mas sencillo, que es asumiendo la fuente de calor
9=0.

9.2. Condiciones de uso adecuadas

1. Tejidos homogéneos: Aproximacion valida para regiones con propiedades
térmicas uniformes.

2. Perfusion sanguinea constante: Supone flujo sanguineo estable en el dominio.

3. Aplicaciones clinicas: Hipertermia, crioterapia y modelado térmico en terapias
oncoldgicas.

9.3. Solucion analitica

Consideremos la ecuaciéon diferencial parcial 9.3 sin el término as,

0.0(x,y,7) = a;V3(x,y,7) — a,Wo(z,y,7), (9.4)
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donde a; y a, son pardmetros positivos adimensionales, W es una constante asociada al
término de disipacién. El dominio de estudio corresponde al cuadrado [0, 1] x [0,1] en el
espacio y al intervalo [0, 1] en el tiempo adimensional .

Las condiciones de frontera establecidas son mixtas:
e En y =0 es y =1 se imponen condiciones de tipo Neumann, es decir,

9,0(z,0,7) =0, 9,0(z,1,7)=0, 72>0.

e En z = 0 se prescribe una condicion de tipo Dirichlet:

0(0,y,7) =0, 7>0.

e« En x =1 se fija una condicién de tipo Neumann no homogénea, con dependencia
lineal en el tiempo:
0,0(L,y,7)=71, 7>0.

Ademads, se establece la condicién inicial

0(z,y,0) =0, (x,y)€[0,1] x]0,1].

9.3.1. Reduccién del problema

Obsérvese que la ecuacion es independiente de la variable y, y que las condiciones de
frontera en esa direccién son homogéneas (Neumann). Por tanto, la solucién puede
asumirse también independiente de y, reduciendo el problema a una dimension espacial.
En consecuencia, se escribe

O(x,y,7) =0(x,T).

La ecuacion 9.4 se reduce a resolver

020

87_0(.'1}', 7') = alﬁ

(x,7) —a,Wo(x, 1), (9.5)

con las condiciones de frontera

0(0,7) =0, 0,0(1,7)=r,

y la condicién inicial

0(z,0) = 0.
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9.3.2. Método de solucion

Para resolver este problema, se aplica la técnica de separacion en soluciéon particular +
solucién homogénea. Se introduce la transformacién

0(z,7) = u(x,7) + ¢(z,7),
donde p(x, T) se escoge de manera que satisfaga la condicién de frontera no homogénea
en z = 1. Una eleccién natural es
oz, 7) = 2T,

pues se cumple
ax(p(lﬂ—) =T, (P(O,T) =0.

De este modo, la funcién u(x,7) obedece condiciones homogéneas:

u(0,7) =0, 9d,u(l,7)=0,

y al sustituir en la ecuacién 9.5, se obtiene para u(z,7):

0%u
ou=a,— —a;Wu—a,War — .
Ox?

9.3.3. Solucién mediante series

Se plantea una expansién de u(z,7) en términos de los autovalores y autofunciones del
problema de Sturm-Liouville asociado:

u(z, ) = io: a,,(7)sen(a,,x),

m=1

donde los modos propios satisfacen

(2m—1)m
Uy =

La evolucién temporal de los coeficientes a,, (7) resulta

1—e7mT 0,T—14+e9m7
(1) = e ey
o (1t (—1ymt
2(—1)m- 20, W (—1)™"
Om :ala?n+a2wv Cm — — 2 ’ dm - 2
m m
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Finalmente la solucién aproximada truncada a M modos se expresa como

M
u(x,7) ~ xT + Z a,,(T)sen(a,,x).
m=1

9.3.4. Solucion truncada codificada

(9.6)

Basado la Ecuacion 9.6 se codificé la solucion analitica aproximada y se guardd en un

dataframe para los tiempos de interés.

Listado 9.1 Guardado de los datos de la solucién analitica (Parte 1).

import numpy as np
import pandas as pd

# - Parametros fisicos --————--——-
p = 1050 # densidad

c = 3639 # calor especifico

keff = 5 # conductividad efectiva

tf = 1800 # tiempo caracteristico

LO = 0.05 # longitud caracteristica

cb = 3825 # perfusidn

Q=0 # fuente (no usada aqui)

# Parametro auxiliar
alpha_phys = p * ¢ / keff

I Coeficientes adimensionales —-————-—-—--
= tf / (alpha_phys * LO*%2)
a2 = tf *x cb / (p * c)

i commooooss Parametros de la serie analitica —--—————-———-
W=1.0

M = 60 # nGmero de modos en el truncamiento

m = np.arange(1l, M+1)

alpha m = (2*m - 1) * np.pi / 2.0 # _m

lambda_m = alpha_m**2

sigma_m = al * lambda_m + a2 * W # _m

sign = (-1.0)**x(m-1)
c.m = -2.0 * sign / (alpha_m#¥*2)
dm=-2.0 % a2 * W * sign / (alpha_m**2)

# ——m———- Mallado en espacio y tiempos —————————-—
step = 0.04
# 0.00, 0.04, ..., 1.00

grid_vals = np.round(np.arange(0.0, 1.0 + le-12, step), 2)

x = grid_vals.copy ()
y = grid_vals.copy()
X, Y = np.meshgrid(x, y, indexing='xy')

times = [0.0, 0.25, 0.5, 0.75, 1.0]
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B emmmmmemms Funcién para calcular (x, ) —-————————-
def theta_xt(x_vec, tau_val):
"""Devuelve theta(x, tau) en un vector de x,
usando la serie truncada."""
# coeficientes a_m(tau)
small_mask = np.isclose(sigma_m, 0.0, atol=1e-12)
a = np.empty_like(sigma_m)
if np.any(small_mask) :
al[small_mask] = (c_m[small_mask]*tau_val
+ 0.5*%d_m[small_mask]*tau_val**2)
if np.any(~small_mask):
s = sigma_m[~small_mask]
cm = c¢c_m[~small_mask]
dm = d_m[~small_mask]
al~small_mask] = (cm*(1.0 - np.exp(-s*tau_val))/s
+ dm*(s*tau_val - 1.0
+ np.exp(-s*xtau_val))/s**2)
# suma modal
sin_ax = np.sin(unp.outer(alpha_m, x_vec)) # (M, Nx)
theta_series = a.dot(sin_ax) # (Nx,)
# afladir (x, ) = x
return theta_series + tau_val * x_vec

R Smm——meee= Construccion del DataFrame —-—-—————-—-
results = []
for t_val in times:

theta_x = theta_xt(x, t_val) # (Nx,)

Theta = np.tile(theta_x, (y.size, 1)) # shape (Ny, Nx)
for xi, yi, thetai in zip(X.ravel(), Y.ravel(), Theta.ravel()):
results.append([t_val, float(xi), float(yi), float(thetai)])
df = pd.DataFrame(results, columns=["time", "X", "Y", "Theta"])

I Guardar en CSV —-————————-
df .to_csv("data/sol_analitica.csv", index=False)
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10. Otras aplicaciones de la ecuacion del

bio-calor

o Quintero et al. (2017) desarrollan un modelo basado en ecuaciones diferenciales

parciales que integra la ecuacién del bio-calor y la ley de Arrhenius para estimar
el dano térmico en tratamientos de hipertermia superficial. Utilizan el método de
lineas para resolver el sistema y plantean un problema de optimizacién que busca
maximizar el dano al tejido tumoral minimizando el dano colateral. Su trabajo
demuestra cémo la modelacién matemaética puede guiar estrategias terapéuticas
mas seguras y eficaces.

Dutta y Rangarajan (2018) presentan una solucién analitica cerrada en dos
dimensiones para la ecuacion del bio-calor, considerando modelos de conduccién
tanto de tipo Fourier como no-Fourier. Mediante el uso de la transformada
de Laplace, analizan la influencia de parametros fisioldgicos como la perfusiéon
sanguinea y el tiempo de relajacién térmica sobre la evolucién de la temperatura.
Su investigacion aporta una base tedrica sélida para comprender la propagacion
térmica en tejidos vivos durante la hipertermia terapéutica.

e Yang et al. (2014) propone una estrategia numérica para resolver problemas

inversos de conducciéon térmica en tejidos biolégicos multicapa, utilizando un
enfoque en diferencias finitas y el concepto de tiempo futuro. El estudio se enfoca
en predecir las condiciones de frontera necesarias para generar distribuciones
de temperatura deseadas. La implementacion de este método permite estimar
parametros relevantes en tiempo real, lo cual resulta esencial para el control térmico
preciso en procedimientos médicos no invasivos como la hipertermia localizada.
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Hipertermia como opcién terapéutica complementaria en el
manejo de cancer

La Organizacién Mundial de la Salud (2022) en su pégina web define Cancer como:

«Cdancery es un término genérico utilizado para designar un amplio grupo de enfermedades
que pueden afectar a cualquier parte del organismo; también se habla de «tumores malignoss
o «neoplasias malignas». Una caracteristica definitoria del cdncer es la multiplicacion
rapida de células anormales que se extienden mds alld de sus limites habituales y pueden
invadir partes adyacentes del cuerpo o propagarse a otros 0rganos, en un proceso que se
denomina «metdstasisy. La extension de las metdstasis es la principal causa de muerte
por la enfermedad.

Por su parte Instituto Nacional del Cancer (2021) aporta lo siguiente:

Es posible que el cancer comience en cualquier parte del cuerpo humano, formado por
billones de células. En condiciones normales, las células humanas se forman y se
multiplican (mediante un proceso que se llama division celular) para formar células nuevas
a medida que el cuerpo las necesita. Cuando las células envejecen o se danan, mueren y
las células nuevas las reemplazan. A veces el proceso no sigue este orden y las células
anormales o células daniadas se forman y se multiplican cuando no deberian. FEstas células
tal vez formen tumores, que son bultos de tejido. Los tumores son cancerosos (malignos)
0 no cancerosos (benignos).

Figura 10.1.: Una célula de cancer de seno que se multiplica (Instituto Nacional del
Cancer 2021).
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Esta enfermedad es la principal causa de muerte a nivel mundial, solo en 2020 arrebaté
casi 10 millones de vidas y, segiin datos de Organizaciéon Mundial de la Salud (2022), los
canceres mas comunes en 2020 fueron:

e De mama (2.26 millones de casos)

e De pulmén (2.21 millones de casos)

e De colon (1.93 millones de casos)

o De prostata (1.41 millones de casos)

o De piel (distinto del melanoma) (1.20 millones de casos)
o Géstrico (1.09 millones de casos)

Es ante este panorama, distintos tratamientos surgen con el objetivo de erradicar la
enfermedad siempre que se tenga una deteccién oportuna. Uno de dichos tratamientos es
la hipertermia, segin en el National Cancer Institute (2021), es un método que consiste en
calentar el tejido corporal hasta los 39-45 °C para ayudar a erradicar células cancerigenas
con pequenas o nulas lesiones en el tejido sano. La hipertermia también es llamada
terapia térmica o termoterapia.

Uno de los principales retos de este tratamiento es la creaciéon de un modelo éptimo que
se adecue al comportamiento de la transferencia de calor que se hace a los tejidos con el
fin de danar tinicamente el area en el que se encuentran las células cancerigenas, es por
ello que los modelos de inteligencia artificial y mas precisamente las PINN’s Capitulo 7
surgen como posible solucién a este reto.

El presente estudio utilizé como punto de partida el trabajo realizado por Alessio Borgi
(2023) para modelar el calentamiento del tejido corporal usando la ecuacion del Bio-Calor
en dos dimensiones.
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11. Metodologia

En esta seccién se describe el enfoque metodolégico utilizado para evaluar la efectividad
de una PINN utilizando una arquitectura DeepONet con el objetivo de resolver la ecuacion
del Bio-Calor. El proceso metodolégico se divide en las siguientes etapas:

11.1. Aportaciones del modelo

Ya que se parte del trabajo de Alessio Borgi (2023), se examiné que dos de los puntos a
mejorar de la red neuronal que plantearon son:

1. Desarrollar nuevas arquitecturas para la red neuronal y explorar nuevas
configuraciones.

2. Combinar las fortalezas de los algoritmos de optimizacién Adam y L-BFGS
Seccién 7.1 para mejorar la velocidad de convergencia y la precision.

Teniendo los anteriores puntos en cuenta, se procedié a abordarlos e implementarlos
dentro del disefio del modelo.

11.2. Diseno del modelo

El lenguaje seleccionado fue Python, a su vez el cédigo se basa enteramente en la libreria
Deepxde creada por Lu, Meng, et al. (2021), la cual estd directamente enfocada a resolver
ecuaciones diferenciales, se usé ademas como backend tensorflow compat_v1, siendo su
eleccién debida tinicamente a la familiarizacion previa que se tenia con ella. Finalmente,
el entorno donde se programé y optimizé el cédigo fué en Google Colab ya que la potencia
de cémputo ofrecida por la plataforma era necesaria para ejecutar el modelo.

11.3. Implementaciéon del modelo

La implementacién del modelo se llevé a cabo en dos etapas clave: (1) el desarrollo
del c6digo base para resolver la ecuacién del Bio-Calor mediante DeepXDE,
y (2) la optimizacién sisteméatica de los hiperpardmetros. Para esta tltima,
se siguieron las recomendaciones del estudio de Alessio Borgi (2023), adaptadas a las
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particularidades del problema. Se ajustaron parametros criticos como el nimero de
épocas de entrenamiento (iterations), la tasa de aprendizaje (learning rate) asi como
un decaimiento en el mismo dependiente de la iteracién actual (decay), la funcién de
activacion (elu) y el esquema de inicializacion de pesos (Glorot normal). Estos ajustes se
realizaron mediante un proceso iterativo que buscaba minimizar la funcién de pérdida
mientras se mantenia un tiempo de entrenamiento computacionalmente viable.

11.4. Evaluacion del modelo

Para validar el desempeno del modelo propuesto, se realizé una evaluacion exhaustiva
utilizando un conjunto de datos independiente, el cual no fue empleado durante las fases
de entrenamiento o ajuste de hiperparametros. Este enfoque garantiza una medicion
objetiva de la capacidad de generalizacién del modelo ante datos no vistos.

Las predicciones generadas por el modelo fueron analizadas mediante visualizaciones
espaciotemporales, las cuales permiten comparar cualitativamente el comportamiento
de las soluciones pronosticadas frente a los rangos fisicos y temporales definidos en
el problema. En particular, se generaron graficas de superficies 3D que muestran la
evolucion de las variables de interés a lo largo del dominio espacial y temporal bajo
estudio. Adicionalmente, se incluyeron representaciones de cortes transversales y series
temporales en puntos estratégicos para facilitar la interpretacion de los resultados.

Cabe destacar que este andlisis preliminar se centré en examinar la coherencia fisica
y la estabilidad numérica de las predicciones. Para la evaluacién cuantitativa del
modelo, se implementé una comparacién directa con las soluciones obtenidas mediante
el método numérico de Crank-Nicolson, resuelto en Julia utilizando la libreria
Differential Equations.jl.

11.5. Comparacion de resultados

Para evaluar el desempeno predictivo del modelo propuesto, se realizaron dos tipos de
comparaciones:

1. Una evaluacion cualitativa basada en visualizaciones.
2. Un anélisis cuantitativo mediante métricas de error estandarizadas.

En primer lugar, se llevé a cabo una comparacién visual con los resultados reportados en
el trabajo de Alessio Borgi (2023), dado que dicho estudio no incluye datos numéricos
tabulados, sino tnicamente representaciones graficas de las soluciones. Esta comparacién
permiti6 identificar coincidencias y discrepancias en el comportamiento espaciotemporal
de las variables de interés, destacando las fortalezas del modelo propuesto en términos de
estabilidad numérica.
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En segundo lugar, para una evaluacién cuantitativa rigurosa, se compararon las
predicciones del modelo con soluciones de referencia generadas mediante el método de
Crank-Nicolson, implementado en Julia utilizando la libreria DifferentialEquations.jl. La
comparacion se realizd sobre una malla uniforme de 26x26 puntos en el cuadrado de
[0, 1] x [0, 1], calculando para cada instante de tiempo relevante las siguientes métricas:

o Error Absoluto Medio (MAE).
o Error Absoluto Maximo (MaxAE).
o Error L2 (norma euclidiana).

Estos criterios permitieron cuantificar no solo la precisién global del modelo, sino
también sus desviaciones locales mas significativas, particularmente en regiones con
alta variabilidad espacial. Los resultados detallados de este analisis, junto con una
discusién sobre la eficiencia computacional relativa entre ambos métodos, se presentan
en la Tabla 14.1 y Tabla 14.2.

11.6. Analisis y conclusion

Finalmente, se realizé6 un andlisis detallado de los resultados obtenidos para extraer
conclusiones significativas. Se proporcionaron recomendaciones basadas en los hallazgos
del estudio, lo que permiti6 establecer un marco para interpretaciones analiticas profundas
y recomendaciones bien fundamentadas en la seccién de conclusiones del estudio.

Este enfoque metodolégico proporcioné una base sélida para los resultados obtenidos,
asegurando la integridad y la calidad del andlisis realizado en el estudio.
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12. Predicciones del método numeérico

Para validar los resultados del modelo propuesto, se implement6 el método de Crank-
Nicolson en Julia utilizando la libreria DifferentialEquations.jl. El método se resolvio
sobre una malla refinada de 51x51 puntos para garantizar alta precision en la solucion
numérica, calculando las predicciones en los tiempos clave: t = [0.0, 0.25, 0.50, 0.75,
1.0]. En la Figura 12.1 se muestran las cinco graficas generadas, las cuales ilustran la
evolucién temporal de la solucién en el dominio de estudio.

Listado 12.1 Método de Crank-Nicolson (Parte 1).

using DifferentialEquations, LinearAlgebra
using DataFrames, CSV

# -—— PARAMETROS FISICOS Y DIMENSIONALES ———-————=————————————m——m——— o

p, ¢ = 1050.0, 3639.0 # densidad, calor especifico

k_eff = 5.0 # conductividad

t_f = 1800.0 # tiempo final

1L, = 0.05 # longitud del dominio

c_b = 3825.0 # coef. perfusidn

Q = 0.0 # fuente térmica

T M, T a=45.0, 37.0 # temp maxima, temp ambiente

# --- COEFICIENTES ADIMENSIONALES —-———-——————————————————————————————————
=p * c / k_eff

a =t_f/ ( *xL°2)

a =t_fx*xcb/ (p*c)

a = (tf*xQ / (p*cx* (TM-T_a)) # aqui Q=0 » a=0

# -=- MALLA ESPACTAL =-============================—=——me——==———————mmm-
Nx, Ny = 51, 51
dx, dy = 1.0 / (Nx - 1), 1.0 / (Ny - 1)

x = range(0, 1, length=Nx)

y = range(0, 1, length=Ny)

N = Nx * Ny # total de puntos

# ——— CONDICION INICTAL ——====—=—=mm = mm o m oo

u0 = zeros(N) # coincide con la condicidén inicial =0

i === SISMIYA DT 200 DEL PE —e—————sss—eoeemmoooosoooosssssoooasoooos0s
function f!(du, u, _, )
U = reshape(u, Nx, Ny) # arreglo 2D con los valores actuales
D = zeros(eltype(U), Nx, Ny) # preasigno en cero
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# Enforce Dirichlet en X=0: (0,y, ) = O (mantenemos esa fila = 0)
Uf1, :1 .= 0.0

Q@inbounds for i im 1:Nx, j in 1:Ny
# Si estamos en la frontera izquierda X=0 (Dirichlet),
# la condicidén fija implica _ = 0 en esos puntos
# (se mantiene constante).
if i ==
D[i, jl = 0.0
continue
end

# Derivada segunda en X:
if 1 == Nx
# Neumann con valor no homogéneo en X=1: _X (1,y,) =
# uso ghost node U_{N+1} tal que (U_{N+1} - U_N)/dx =
# o U {N+1} = UN + *dx
U_ghost = U[Nx, j] + * dx
d2x = (U_ghost - 2U[Nx, j] + UINx-1, j1) / dx"2
else
# interior (o i==2 cuando i-1 existe)
d2x = (U[i+1, jl - 2U[i, j] + U[i-1, j1) / dx"2
end

# Derivada segunda en y (bordes Y=0 y Y=1 son
# Neumann homogéneos _Y = 0)
ifj::
# j=1: ghost U_0 = U_2 - segunda derivada =
# 2x(U[2] - U[1]) / dy~2
d2y = 2%(U[i, 2] - U[i, 1]) / dy~2
elseif j == Ny
# j=Ny: ghost U_{Ny+1} = U_{Ny-1} -+ segunda derivada =
# 2x(U[Ny-1] - U[Ny]l) / dy~2
d2y = 2x(U[i, Ny-1] - U[i, Nyl) / dy~2
else
d2y = (U[i, j+11 - 2U[i, j]1 + Uli, j-11) / dy~2

end
# ECUACION: _ =a * (d2x + d2y) - a * + a
D[i, j] = a * (d2x + d2y) - a * U[i, jl + a
end
du .= vec(D)
end
# ——— RESOLVER PDE ———————mm oo oo oo

span = (0.0, 1.0)

prob ODEProblem(f!, u0, span)

taus [0.0, 0.25, 0.5, 0.75, 1.0]

sol = solve(prob, Trapezoid(), dt=8e-4, saveat=taus)

# ——— PROCESAR SOLUCION EN GRILLA REDUCIDA ——-—---——————-————————————————
idxs = 1:2:Nx # indices para submuestreo

# Preasignar vectores para crear el DataFrame
times = Float64[]

Xs = Float64[]

Ys = Float64[]

Thetas = Float64[]
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for in taus
@ = reshape(sol(), Nx, Ny)

# Asegurarse (por consistencia) que la frontera izquierda permanece O

e[1, :1 .= 0.0
for j in idxs, i in idxs
push! (times, )
push! (Xs, x[i])
push! (Ys, y[j1)
push! (Thetas, 8[i, jI1)
end
end

df = DataFrame(time=times, X=Xs, Y=Ys, Theta=Thetas)

# —== GUARDAR CSV ———==—======— = mm—ommoo
ruta = "data"
CSV.write(joinpath(ruta, "crank_nick.csv"), df)

using DataFrames, CSV, Plots, Statistics
pyplot ()

# --- OBTENER VALORES UNICOS Y ORDENADOS DE X, Y, TIME
x_vals = sort(unique(df.X))

y_vals = sort(unique(df.Y))

times = sort(unique(df.time)) # tiempos

Nx, Ny = length(x_vals), length(y_vals)

# ——— RECONSTRUIR MATRICES 2D DE THETA PARA CADA TIEMPO
solutions = []

for t in times
dft = filter(:time => ==(t), df)

# Crear matriz vacia
@ = £ill(NaN, Nx, Ny)

# Llenar la matriz con los valores correspondientes
for row in eachrow(dft)

ix = findfirst(==(row.X), x_vals)

iy = findfirst(==(row.Y), y_vals)

B[ix, iy] = row.Theta
end

push! (solutions, 8)

end

# -—-- DETERMINAR ESCALA GLOBAL DE COLORES --———-———-————-
zmin = minimum([minimum(u) for u in solutions])

zmax = maximum([maximum(u) for u in solutions])

# -—- GRAFICAR EN LAYOUT 32 ———-—==—===—===—————————

p = plot(layout = (3, 2), size = (800, 900))

for (i, (t, ®)) in enumerate(zip(times, solutions))
surface! (
p, y_vals, x_vals, 0;
camera = (45,30),
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xlabel = "Y",
ylabel = "X",
zlabel = "T ",
title = "t = $(¢)",
subplot = 1,

c = :thermal,

clim = (zmin, zmax),
legend = false
)

end

# Eliminar ejes y contenido del subplot 6
plot!(p[6], framestyle = :none,

grid = false,

xticks false,

yticks = false)
close("all")

display(p)
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t=0.0 ' t=0.25

0.8 02 : 0.8 02"
Y 1.0 0.0 X Y 1.0 0.0 X

t=0.5 t=0.75

0.8 02 . 0.8 02"
Y 1.0 0.0 X Y 1.0 0.0 X

0.0

Figura 12.1.: Resultados obtenidos mediante el método numérico de Crank Nickolson,
para la temperatura T en funcién de las coordenadas X e Y, aqui el cédigo
de colores representa el gradiente de temperaturas; todas las medidas estan
adimensionalizadas dadas las ecuaciones 9.2.
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12.1. Analisis de sensibilidad

Con el objetivo de optimizar el proceso de comparacién cuantitativa con el modelo de
redes neuronales, se exporté un subconjunto representativo de los resultados Codigo 12.1.
Aunque la simulacion original utiliz6 una malla de 51x51 puntos, se almacenaron
unicamente los valores correspondientes a una grilla de 26x26 puntos. Esta decisién se
basé en:

1. Suficiencia estadistica: La densidad de puntos conserva los patrones espaciales

criticos.
2. Eficiencia computacional: Reduce el tamano del archivo sin perder informacion

relevante.
Los datos se guardaron en un archivo CSV estructurado con las siguientes columnas:

o Coordenadas espacio-temporales (t, x, y) para cada punto de la grilla 26 x 26.
e Valores de la solucién en los tiempos de interés.

Este archivo permitié calcular de manera estandarizada las métricas de error (MAE,
MaxAE, error L2) en la secciéon de comparacién de resultados Seccién 14.2.1.
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13. Métricas del modelo

Conforme se ha referido previamente, el desarrollo del modelo predictivo se realizo
utilizando el framework DeepXDE (versiéon 1.10.1) con backend de TensorFlow 1.x
(configurado mediante tensorflow.compat.vl). Para asegurar reproducibilidad, se fijé la
semilla aleatoria en 123 a nivel de DeepXDE, TensorFlow y NumPy. La red neuronal se
implement6 como un DeepONetCartesianProd con la siguiente estructura especializada:

o Rama (branch)

— Capa de entrada: (num_ sensors + 1)2 = 49 neuronas.
— 3 capas ocultas de 20 neuronas cada una.

o Tronco (trunk)

— Capa de entrada: 3 neuronas (coordenadas espaciotemporales x, y, t).
— Misma configuracion de capas ocultas que la rama.

e Hiperparametros clave

— Funcién de activacién: ELU (Exponential Linear Unit).

— Inicializacién de pesos: Glorot normal.

— Optimizador: ADAM con tasa de aprendizaje inicial de 2x10 2 y decaimiento
exponencial (decay rate=0.05 cada 500 pasos).

import deepxde as dde
import numpy as np
import tensorflow as tf

# Backend y semilla
dde.backend.set_default_backend("tensorflow.compat.vi")
dde.config.set_random_seed(123)

# Parametros fisicos

p = 1050

c = 3639

keff = 5

final time = 1800
LO = 0.05

cb = 3825

Q=0

™ = 45
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Ta = 37
alpha = p * ¢ / keff

# Coeficientes adimencionales

al = final_time / (alpha * LO*%2)
a2 = final_time * cb / (p * ¢)
a3 = (final_time * Q) / (p * ¢ * (TM - Ta))

# Dominio de las fronteras
x_initial, x_boundary = 0.0, 1.0
y_initial, y_boundary = 0.0, 1.0
t_initial, t_final = 0.0, 1.0

# Configuracion del numero de datos

pts_dom = 45
pts_bc = 30
pts_ic = 20

num_test = 25

# Malla de sensores y espacio de funciomnes
num_sensors = 6

num_function = 25

size_cov_matrix = 50

# Arquitectura de la red
width_net = 20

len_net = 3

AF = "elu"

k_initializer = "Glorot normal"

# Parametros de entrenamiento
num_iterations = 20000
learning_rate = 2e-3
decay_rate = 0.05

decay_steps = 500

spatial_domain = dde.geometry.Rectangle([x_initial, y_initiall,
[x_boundary, y_boundary])

time_domain = dde.geometry.TimeDomain(t_initial, t_final)

geomtime = dde.geometry.GeometryXTime(spatial_domain, time_domain)

def initial_condition(X):
X = np.asarray(X)
if X.ndim == 1:
return 0.0
return np.zeros((X.shape[0], 1))

def heat_equation(x, u, coords):

u_t = dde.grad.jacobian(u, x, i=0, j=2)
u_xx = dde.grad.hessian(u, x, i=0, j=0)
u_yy = dde.grad.hessian(u, x, i=1, j=1)
return u_t - al*(u_xx + u_yy) + a2*u
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def zero_value(X):
return O

def time_value(X):
return X[:, 2]

def is_on_vertex(x):
vertices = np.array([[x_initial, y_initiall,
[x_boundary, y_initial],
[x_initial, y_boundary],
[x_boundary, y_boundaryl])
return any(np.allclose(x, v) for v in vertices)

def is_initial(X, on_initial):
return on_initial and np.isclose(X[2], t_initial)

def left_boundary(X, on_boundary) :

spatial = X[0:2]

t = X[2]

return (
on_boundary
and np.isclose(spatial[0], x_initial)
and not np.isclose(t, t_initial)
and not is_on_vertex(spatial)

)

def right_boundary(X, on_boundary):

spatial = X[0:2]

t = X[2]

return (
on_boundary
and np.isclose(spatial[0], x_boundary)
and not np.isclose(t, t_initial)
and not is_on_vertex(spatial)

)

def up_low_boundary(X, on_boundary) :
spatial = X[0:2]
t = X[2]
return (on_boundary
and (np.isclose(spatial[l], y_initial)
or np.isclose(spatial[l], y_boundary))
and not np.isclose(t, t_initial)
and not is_on_vertex(spatial)

)

# Condiciones iniciales y de frontera
ic = dde.icbc.IC(geomtime, initial_condition, is_initial)
left_bc = dde.icbc.DirichletBC(geomtime,

zero_value, left_boundary)
right_bc = dde.icbc.NeumannBC(geomtime,

time_value, right_boundary)
up_low_bc = dde.icbc.NeumannBC(geomtime,

zero_value, up_low_boundary)

pde_data = dde.data.TimePDE(
geomtime,
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heat_equation,

[ic, left_bc, right_bc, up_low_bc],
num_domain=pts_dom,
num_boundary=pts_bc,
num_initial=pts_ic

)

# _________________________________________________________________________
# Sensores y espacio de funciones

# _________________________________________________________________________
side = np.linspace(x_initial, x_boundary, num_sensors + 1)

x, y = np.meshgrid(side, side, indexing='xy')

sensor_pts = np.stack([x.ravel(), y.ravel()], axis=1)

fs = dde.data.function_spaces.GRF2D(N=size_cov_matrix,
interp="linear")

data = dde.data.PDEQOperatorCartesianProd(
pde_data,
fs,
sensor_pts,
num_function=num_function,
function_variables=[0, 1],
num_test=num_test

)

# _________________________________________________________________________
# Definicion de la red

# _________________________________________________________________________
branch_layers = [(num_sensors + 1)**2] + len_net * [width_net]

trunk_layers = [3] + len_net * [width_net]

net = dde.nn.DeepONetCartesianProd/(
branch_layers,
trunk_layers,
activation=AF,
kernel _initializer=k_initializer

model = dde.Model(data, net)
model.compile("adam", lr=learning rate,

decay=("inverse time", decay_steps, decay_rate))
losshistory, train_state = model.train(iterations=num_iterations,
display_every=decay_steps)

# Refinamiento con el optimizador L-BFGS

model.compile ("L-BFGS")
losshistory, train_state = model.train()
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13.1. Graficas de pérdida del modelo

El proceso de entrenamiento del modelo se monitoreé mediante el seguimiento detallado
de cinco componentes de pérdida, cada una asociada a restricciones fisicas y matematicas
especificas del problema:

1. Pérdida residual de la EDP

e Funciéon: Mide el cumplimiento de la ecuacion de Bio-Calor en el dominio
interior.

o Importancia: Garantiza que la solucién aprendida satisfaga la fisica subyacente.

e Comportamiento esperado: Debe converger a valores cercanos a cero
(tipicamente < le-3).

2. Pérdida de condicién inicial

e Funcién: Controla la precisién en t=0.
o Importancia: Asegura coherencia con el estado inicial del sistema.
o Patrén tipico: Suele ser la primera en converger por su caracter puntual.

3. Pérdida de frontera izquierda (Dirichlet)

e Funcién: Evalia el cumplimiento de condiciones de valor prescrito.
e Relevancia: Mantiene valores fijos en bordes especificos.
o Convergencia: Normalmente rapida por ser restrictiva.

4. Pérdida de frontera derecha (Neumann)

e Funcién: Verifica gradientes normales en esta frontera
o Dificultad caracteristica: Puede mostrar oscilaciones iniciales

5. Pérdida de fronteras superior/inferior (Neumann)

e Funcién: Controla condiciones de flujo en estos bordes
o Complejidad: En problemas 2D /3D suele ser la tltima en estabilizarse

13.1.1. Perdida para el conjunto de entrenamiento

La tendencia decreciente de la pérdida durante el entrenamiento evidencia que el modelo
neuronal estd aprendiendo progresivamente a satisfacer las restricciones fisicas impuestas
por la ecuacién de Bio-Calor y sus condiciones asociadas. Este comportamiento indica una
correcta adaptacién de los parametros de la red, permitiendo reducir consistentemente
el error en las distintas componentes de la funcién objetivo y aproximando con mayor
precision la dindmica térmica en el dominio.
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import plotly.graph_objects as go

# Nombres de las componentes del loss
loss_labels = [
"Pérdida residual PDE",
"Pérdida de condicidén inicial",
"Pérdida de frontera izquierda (Dirichlet)",
"Pérdida de frontera derecha (Neumann)",
"Pérdida de fronteras superior/inferior (Neumann)"

]

# Extraer pasos y pérdida de entrenamiento
steps = losshistory.steps
train_loss = np.array(losshistory.loss_train)

# Crear figura
fig_train = go.Figure()

for i in range(train_loss.shape[1]):
fig train.add_trace(go.Scatter(
x=steps,
y=train_loss[:, i],
mode='lines',
name=loss_labels[i]

)

fig_train.update_layout(
title="Historial de pérdida en el entrenamiento",
xaxis=dict(title="Iteracién", tickformat=".1le"),
yaxis=dict(title="Pérdida (log)", type="log", tickformat=".1le"),
template="plotly_white",
legend=dict (x=0.99, y=0.99),
font=dict(size=14)

13.1.2. Pérdida para el conjunto de prueba

La disminucién del error en el conjunto de prueba confirma que el modelo no solo
memoriza los datos de entrenamiento, sino que logra generalizar a situaciones no vistas.
Esto constituye un resultado favorable, pues asegura que la red neuronal mantiene su
capacidad predictiva fuera de los escenarios empleados para el ajuste, garantizando
robustez y confiabilidad en aplicaciones biomédicas donde la precision en la estimacion
térmica es fundamental.

import plotly.graph_objects as go

# Nombres de las componentes del loss
loss_labels = [
"Pérdida residual PDE",
"Pérdida de condicidén inicial",
"Pérdida de frontera izquierda (Dirichlet)",
"Pérdida de frontera derecha (Neumann)',
"Pérdida de fronteras superior/inferior (Neumann)"
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Pérdida (log)

Historial de pérdida en el entrenamiento
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5.0e+0)

—— Pérdida residual PDE

— Peérdida de condicion inicial

2.0e+0 — Peérdida de frontera izquierda (Dirichlet)
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Figura 13.1.: Gréfica de la perdida en el entrenamiento.
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]

# Extraer pasos y pérdida de entrenamiento
steps = losshistory.steps
test_loss = np.array(losshistory.loss_test)

# Crear figura
fig_test = go.Figure()

for i in range(test_loss.shape[1]):
fig test.add_trace(go.Scatter(
x=steps,
y=test_loss[:, il,
mode="'lines',
name=loss_labels[i]

)

fig test.update_layout(
title="Historial de pérdida en el conjunto de prueba",
xaxis=dict(title="Iteracidén", tickformat=".1le"),
yaxis=dict(title="Pérdida (log)", type="log", tickformat=".le"),
template="plotly_white",
legend=dict(x=0.99, y=0.99),
font=dict(size=14)

13.2. Guardado de datos

Para permitir la comparacion cuantitativa con el método de Crank-Nicolson y facilitar
la generacion de visualizaciones consistentes, se exportaron las predicciones del modelo
neuronal en formato CSV. El proceso consisti6 en:

1. Generacion de la malla de evaluacién:

o Dominio espacial: Cuadrado unitario [0,1] x [0,1].
 Discretizacién: 26 segmentos equiespaciados en cada eje (x, y).
« Puntos totales: 676 (26 x 26).

o Tiempos evaluados: t = [0.0, 0.25, 0.50, 0.75, 1.0].

2. BEstructura del archivo:

o Coordenadas espacio-temporales (t, x, y) para cada punto de la grilla 26x26.
e Valores de la solucién en los tiempos de interés.
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Figura 13.2.: Gréfica de la perdida en el conjunto de prueba.

71



Listado 13.1 Guardado de los datos de la red neuronal.

import pandas as pd
# Lista de tiempos
times = [0.0, 0.25, 0.5, 0.75, 1.0]

# Crear la malla (x, y)
num_points = 26

x = np.linspace(0, 1, num_points)
y = np.linspace(0, 1, num_points)
X, Y = np.meshgrid(x, y)

# Lista para almacenar resultados
results = []

for t_val in times:
# Crear entrada trunk: (num_points~™2, 3)
points = np.vstack((X.flatten(), Y.flatten(),
t_val * np.ones_like(X.flatten()))).T

# Crear entrada branch: condicidén inicial constante cero
branch_input = np.zeros((l, sensor_pts.shape[0]))

# Predecir
predicted = model.predict((branch_input, points)).flatten()

# Agregar los datos al resultado
for xi, yi, thetai in zip(points[:, 0], points[:, 1], predicted):
results.append([t_val, xi, yi, thetai])

# Crear el DataFrame
df = pd.DataFrame(results, columns=["time", "X", "Y", "Theta"])

# Obtener la ruta del script actual y guardar el archivo CSV
ruta = r"data/model _DoN.csv"
df .to_csv(ruta, index=False)
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14. Comparacion de resultados

14.1. Comparativa visual de las predicciones

Esta seccion presenta un andlisis cualitativo de los resultados mediante la comparacién
directa entre las predicciones del modelo, las soluciones reportadas en el estudio de Alessio
Borgi (2023), asi como las obtenidas mediante el método de Crank Nicolson y la solucién

analitica. La visualizacién paralela permite evaluar:

o Dominio espacial: Cuadrado unitario [0,1] x [0,1] con malla 26x26.
» Escala de colores: Mapa térmico YIGnBu y viridis (consistente en sus respectivos

graficos).

14.1.1. Modelo contra resultados de Alessio Borgi (2023)

El siguiente cédigo grafica las predicciones de la red neuronal DeepONet para la
temperatura dadas las coordenadas espaciales en los distintos tiempos de interés, los ejes

estan adimencionalizados siguiendo las ecuaciones 9.2.

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.gridspec as gridspec
import pandas as pd

import numpy as np

# Lista de tiempos
times = [0.0, 0.25, 0.5, 0.75, 1.0]

# Cargar el dataframe
df = pd.read_csv(r'data/model_DoN.csv')

# Crear figura con subplots 3D en 1 fila y 5 columnas

fig, axes = plt.subplots(nrows=1, ncols=len(times),
figsize=(28, 7),
subplot_kw={'projection': '3d'})

plt.subplots_adjust(right=0.8)

# Asumimos que el grid es regular
num_points = int(anp.sqrt(df[df["time"] == times[0]].shape[0]))

# Lista para almacenar los objetos surface
surf_list = []
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# Reordenar para graficar

for i, (t_val, ax) in enumerate(zip(times, axes)):
# Filtrar por tiempo actual
df t = df[df["time"] == t_vall]

# Obtener los valores de X, Y, Theta

X_vals = df_t["X"].values.reshape((num_points, num_points))
Y_vals = df _t["Y"].values.reshape((num_points, num_points))
Z_vals = df_t["Theta"].values.reshape((num_points, num_points))

# Dibujar la superficie

surf = ax.plot_surface(
Y vals, X_vals, Z_vals,
rstride=1, cstride=1,
cmap="Y1GnBu",
edgecolor="none",
antialiased=True

)

surf_list.append(surf)

ax.set_title(f"Time = {t_val:.2f}", pad=10)
ax.set_xlabel("Y", labelpad=10)
ax.set_ylabel("X", labelpad=10)
ax.set_zlabel("T []", labelpad=10, rotation=90)
ax.set_box_aspect(None, zoom=0.75)

# Afladir barra de color comin
cbar = fig.colorbar(surf_list[-1], ax=axes,
shrink=0.9, aspect=90,
ad=0.1, orientation='horizontal')
cbar.set_label('Temperatura []')

plt.show()
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Figura 14.1.: Predicciones de la red neuronal a distintos tiempos.

La comparacion visual entre las predicciones del modelo DeepONet Figura 14.1 y los
resultados de , Figura 14.2 revela una notable similitud en la evolucién temporal y espacial
de la temperatura. Ambos modelos capturan la misma tendencia de calentamiento
progresivo, con un gradiente térmico que se intensifica cerca de la frontera derecha
(z = 1), donde se aplica una condicién de Neumann no homogénea. Sin embargo, se
observa que en t = 0, el modelo DeepONet se aproxima con mayor fidelidad al plano
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Figura 14.2.: Resultados reportados por Alessio Borgi (2023) en el caso 2D.

XY =0, lo que sugiere una mejor captura de la condicién inicial en comparacién con el
trabajo de referencia.

14.1.2. Modelo contra método numérico

La siguiente grafica utiliza los archivos csv obtenidos de los codigos 13.1 y 12.1 para motrar
una comparativa entre los tiempos de interés, las predicciones del modelo se encuentran
en la parte superior mientras que las del método numérico en la parte inferior.

crank_nick_data = pd.read_csv(r'data/crank_nick.csv')
model_don_data = pd.read_csv(r'data/model_DoN.csv')

# Determinar los limites comunes para el colorbar

min_temp = min(model_don_datal['Theta'].min(),
crank_nick_data['Theta'].min())

max_temp = max(model_don_datal'Theta'].max(),
crank_nick_data['Theta'].max())

# Crear figura con subplots 3D en 2 filas y 5 columnas
fig = plt.figure(figsize=(22, 12))
axes = []

# Crear los subplots
for i in range(2): # 2 filas
for j in range(5): # 5 columnas
axes.append(fig.add_subplot(2, 5, i*5 + j + 1, projection='3d'))

axes = np.array(axes).reshape(2, 5)

# Afiadir titulos generales para cada fila
fig.text(0.5, 0.92, "Predicciones modelo DON",

ha='center', va='center', fontsize=14,fontweight='bold')
fig.text (0.5, 0.58, "Predicciones método numérico",

ha='center', va='center', fontsize=14, fontweight='bold')

# Funcidén para graficar un dataframe en una fila especifica
def plot_dataframe(df, row, num_points, cmap="viridis"):
surf_list = []
for col, t_val in enumerate(times):
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ax = axes[row, coll

# Filtrar por tiempo actual
df t = df[df["time"] == t_vall]

# Obtener los valores de X, Y, Theta

X_vals = df_t["X"].values.reshape((num_points, num_points))
Y_vals = df_t["Y"].values.reshape((num_points, num_points))
Z_vals = df_t["Theta"].values.reshape((num_points, num_points))

# Dibujar la superficie con limites comunes

surf = ax.plot_surface(
Y vals, X _vals, Z_vals,
rstride=1, cstride=1,
cmap=cmap,
edgecolor="none",
antialiased=True,
vmin=min_temp,
vmax=max_temp

)

surf_list.append(surf)

ax.set_title(f"Time = {t_val:.2f}", pad=10)
ax.set_xlabel("Y", labelpad=10)
ax.set_ylabel("X", labelpad=10)
ax.set_zlabel("T []", labelpad=10, rotation=90)
ax.set_box_aspect (None, zoom=0.75)

return surf_list

# Asumimos que el grid es regular para ambos dataframes
num_points = int(np.sqrt(
model_don_data[model_don_data["time"] == times[0]].shape[0]))

# Graficar el primer dataframe en la fila superior
surf_model_don = plot_dataframe(model_don_data, O, num_points)

# Graficar el segundo dataframe en la fila inferior
surf_crank_nick = plot_dataframe(crank_nick_data, 1, num_points)

# Afiadir barra de color comin en la parte inferior

cbar = fig.colorbar(surf_crank_nick[-1], ax=axes.ravel().tolist(),
use_gridspec=True, orientation='horizontal',
pad=0.05, aspect=90, shrink=0.9)

cbar.set_label ('Temperatura []', labelpad=10)

plt.show()
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Figura 14.3.: Contraste de las predicciones entre el modelo y el método de Crank Nicolson
para cada tiempo. Se aprecia que ambas comparten forma y tendencia, sin
embargo a medida que el tiempo se acerca a t=1 los resultados divergen.

Al contrastar las predicciones del modelo con las obtenidas mediante el método de Crank-
Nicolson Figura 14.3, se confirma que ambas soluciones comparten la misma estructura
general y comportamiento temporal. No obstante, a medida que el tiempo avanza hacia
t = 1, se aprecia una ligera divergencia en la magnitud de la temperatura, especialmente
en la regién cercana a x = 1, donde el gradiente impuesto introduce mayor sensibilidad
numérica.

14.1.3. Modelo contra solucién analitica

La siguiente gréafica utiliza los archivos csv obtenidos de los cédigos 13.1 y 9.1 para
mostrar una comparativa entre los tiempos de interés, las predicciones del modelo se
encuentran en la parte superior mientras que las de la solucién analitica en la parte
inferior.

sol_ana_data = pd.read_csv(r'data/sol_analitica.csv')
model_don_data = pd.read_csv(r'data/model_DoN.csv')

# Determinar los limites comunes para el colorbar

min_temp = min(model_don_datal'Theta'].min(),
sol_ana_data['Theta'] .min())

max_temp = max(model_don_datal['Theta'].max(),
sol_ana_data['Theta'] .max())
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# Crear figura con subplots 3D en 2 filas y 5 columnas
fig = plt.figure(figsize=(22, 12))
axes = []

# Crear los subplots
for i in range(2): # 2 filas
for j in range(5): # 5 columnas
axes.append(fig.add_subplot(2, 5, i*6 + j + 1, projection='3d'))

axes = np.array(axes).reshape(2, 5)

# Afiadir titulos generales para cada fila
fig.text (0.5, 0.92, "Predicciones modelo DON",
ha='center', va='center', fontsize=14,fontweight='bold"')
fig.text(0.5, 0.58, "Predicciones de la Sol. analitica",
ha='center', va='center', fontsize=14, fontweight='bold')

# Funcién para graficar un dataframe en una fila especifica
def plot_dataframe(df, row, num_points, cmap="viridis"):
surf_list = []
for col, t_val in enumerate(times):
ax = axes[row, coll

# Filtrar por tiempo actual
df t = df[df["time"] == t_vall]

# Obtener los valores de X, Y, Theta

X_vals = df_t["X"].values.reshape((num_points, num_points))
Y _vals = df _t["Y"].values.reshape((num_points, num_points))
Z_vals = df_t["Theta"].values.reshape((num_points, num_points))

# Dibujar la superficie con limites comunes

surf = ax.plot_surface(
Y vals, X _vals, Z_vals,
rstride=1, cstride=1,
cmap=cmap,
edgecolor="none",
antialiased=True,
vmin=min_temp,
vmax=max_temp

)

surf_list.append(surf)

ax.set_title(f"Time = {t_val:.2f}", pad=10)
ax.set_xlabel("Y", labelpad=10)
ax.set_ylabel("X", labelpad=10)
ax.set_zlabel("T []", labelpad=10, rotation=90)
ax.set_box_aspect(None, zoom=0.75)

return surf list
# Asumimos que el grid es regular para ambos dataframes
num_points = int(np.sqrt(

model_don_data[model_don_data["time"] == times[0]].shape[0]))

# Graficar el primer dataframe en la fila superior
surf_model_don = plot_dataframe(model_don_data, O, num_points)

# Graficar el segundo dataframe en la fila inferior
surf_crank_nick = plot_dataframe(sol_ana_data, 1, num_points)

# Afiadir barra de color comin en la parte inferior

78



cbar = fig.colorbar(surf_crank_nick[-1], ax=axes.ravel().tolist(),
use_gridspec=True, orientation='horizontal',
pad=0.05, aspect=90, shrink=0.9)

cbar.set_label('Temperatura []', labelpad=10)

plt.show()
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Figura 14.4.: Contraste de las predicciones entre el modelo y la soluciéon analitica para
cada tiempo. Se aprecia que ambas comparten forma y tendencia, sin
embargo a medida que el tiempo se acerca a t=1 los resultados divergen.

Finalmente, la comparacién con la solucién analitica Figura 14.4 refuerza la validez
del modelo DeepONet. Aunque la forma general de la solucién es consistentemente
recuperada, se observa que las discrepancias aumentan levemente con el tiempo, lo cual es
esperable dada la naturaleza truncada de la solucién analitica y la aproximacion inherente
de la red neuronal.

14.2. Validaciones cuantitativas

14.2.1. Modelo contra el método de Crank-Nicolson
Para evaluar numéricamente la precision del modelo DeepONet, se realizé6 una

comparacién sisteméatica con soluciones de referencia generadas mediante el método de
Crank-Nicolson. Este enfoque proporciona una métrica objetiva de la exactitud del

79



modelo, siendo complementado con una serie de graficos que muestran el error absoluto
para cada punto del dominio en los tiempos de interés.

# Funcidén para calcular errores
def calculate_errors(true_data, pred_data, times):
results = []

for time in times:
# Filtrar datos por tiempo
true_subset = true_data[true_datal'time'] == timel
pred_subset = pred_data[pred_datal['time'] == time]

if len(true_subset) == 0 or len(pred_subset) == O:
print (f' Adverten01a No hay datos para tiempo t= {timel}")
continue

# Verificar que las dimensiones coincidan
if len(true_subset) !'= len(pred_subset):
print (f"Advertencia:Num de puntos no coincide para t={timel}")
min_len = min(len(true_subset), len(pred_subset))
true_subset = true_subset.iloc[:min_len]
pred_subset = pred_subset.iloc[:min_len]

# Calcular errores para Theta
theta_true = true_subset['Theta'].values

theta_pred = pred_subset['Theta'].values

absolute_error = np.abs(theta_true - theta_pred)
12_error = np.sqrt(np.sum((theta_true - theta_pred)**2))

results.append ({
'time': time,
'mean_absolute_error': np.mean(absolute_error),
'max_absolute_error': np.max(absolute_error),
'12 error': 12_error

)
return pd.DataFrame(results)

# Calcular errores
error_results = calculate_errors(crank_nick_data, model_don_data, times)

# Guardar resultados
error_results.to_csv("data/error_crank_nic.csv", index=False)

Tabla 14.1.: Desviacion del modelo DeepONet respecto a Crank-Nicolson.

Tiempo MAE MaxAE Error L2

0.000 0.013 0.055 0.457
0.250 0.067 0.182 2.250
0.500 0.070 0.156 2.205
0.750 0.035 0.052 0.992
1.000 0.028 0.107 1.040
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Las métricas de error calculadas —Error Absoluto Medio (MAE), Error Absoluto Méximo
(MaxAE) y Error L2— confirman el buen desempeno del modelo DeepONet. En la
comparaciéon con el método de Crank-Nicolson Tabla 14.1, el MAE se mantuvo entre
0.013 y 0.07, con un valor méximo de 0.182 en el MaxAE. Estos valores reflejan una
aproximacién satisfactoria, aunque se observa que los errores tienden a aumentar en
tiempos intermedios (t = 0.25 y ¢ = 0.5), posiblemente debido a la mayor complejidad
dindmica en esas etapas.

14.2.1.1. Graficas de error absoluto

# Calcular el error absoluto entre los dos dataframes
error_data = model_don_data.copy()
error_data['error'] = np.abs(
crank_nick_data['Theta'] - model_don_datal'Theta'])

# Crear figura con 3 filas y 2 columnas
fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(22, 8))
axes = axes.ravel() # Convertir a array 1D para facil acceso

# Asumir que el grid es regular
num_points = int(np.sqrt(
error_datal[error_data["time"] == times[0]].shape [0]

))

# Configuracidén comin para los mapas de calor
plot_kwargs = {

'cmap': 'hot_r',

'shading': 'auto',

'vmin': error_data['error'].min(),
. 'vmax': error_datal'error'].max()
# Lista para guardar los graficos
abs_errors_pc =

# Crear los subplots
for i, t_val in enumerate(times):
ax = axes[i]

# Filtrar por tiempo actual
df _t = error_datalerror_data["time"] == t_vall

# Obtener valores y reshape

X_vals = df_t["X"].values.reshape((num_points, num_points))

Y_vals = df _t["Y"].values.reshape((num_points, num_points))
error_vals = df_t["error"].values.reshape((num_points, num_points))

# Crear mapa de calor
pc = ax.pcolormesh(X_vals, Y_vals, error_vals, #**plot_kwargs)

# Configuracidén de ejes
ax.set_title(f"Tiempo = {t_val:.2f}", pad=10)
ax.set_xlabel ("X")

ax.set_ylabel("Y")

ax.set_aspect('equal')
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abs_errors_pc.append(pc)

cbar = fig.colorbar(abs_errors_pc[—1], ax=axes,
use_gridspec=True, shrink=0.9,
aspect=90, pad=0.1, orientation='horizontal')
cbar.set_label ('Error absoluto []')

# Mostrar el grafico
plt.show()
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Figura 14.5.: Errores absolutos entre el modelo y el método de Crank Nicolson para cada
tiempo.

14.2.2. Modelo contra la solucion analitica

De manera analoga a la seccién anterior se realizé una comparativa contra la soluciéon
analitica (Seccién 9.3). De este modo se tiene una visién mas completa acerca del
rendimiento del modelo.

# Funcidén para calcular errores
def calculate_errors(true_data, pred_data, times):
results = []

for time in times:
# Filtrar datos por tiempo
true_subset = true_data[true_datal'time'] == timel
pred_subset = pred_data[pred_data['time'] == time]

if len(true_subset) == 0 or len(pred_subset) == 0O:
prlnt(f"Adverten01a No hay datos para tlempo t={timel}")
continue

# Verificar que las dimensiones coincidan
if len(true_subset) != len(pred_subset):
print (f"Advertencia:Num de puntos no coincide para t={timel}")
min_len = min(len(true_subset), len(pred_subset))
true_subset = true_subset.iloc[:min_len]
pred_subset = pred_subset.iloc[:min_len]

# Calcular errores para Theta
theta_true = true_subset['Theta'].values
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theta_pred = pred_subset['Theta'].values

absolute_error = np.abs(theta_true - theta_pred)
12_error = np.sqrt(anp.sum((theta_true - theta_pred)**2))

results.append ({
'time': time,
'mean_absolute_error': np.mean(absolute_error),
'max_absolute_error': np.max(absolute_error),
'12_error': 12_error

b
return pd.DataFrame(results)

# Calcular errores
error_results = calculate_errors(sol_ana_data, model_don_data, times)

# Guardar resultados
error_results.to_csv("data/error_ana.csv", index=False)

Tabla 14.2.: Error del modelo DeepONet respecto a la solucién analitica.

Tiempo MAE MaxAE Error L2

0.000 0.013 0.055 0.457
0.250 0.067 0.180 2.221
0.500 0.068 0.151 2.143
0.750 0.032 0.047 0.905
1.000 0.031 0.116 1.153

Al comparar con la solucién analitica Tabla 14.2, los errores son consistentemente bajos,
con un MAE méximo de 0.068 y un MaxAE de 0.18. La similitud entre ambas tablas
sugiere que el método de Crank-Nicolson y la solucién analitica estan bien alineados, y
que el modelo DeepONet se aproxima a ambos con un nivel de error comparable.

14.2.2.1. Graficas de error absoluto

# Calcular el error absoluto entre los dos dataframes
error_data = model_don_data.copy()
error_datal['error'] = np.abs(
sol_ana_datal['Theta'] - model_don_datal['Theta'])

# Crear figura con 3 filas y 2 columnas
fig, axes = plt.subplots(nrows=1, ncols=5, figsize=(22, 8))
axes = axes.ravel() # Convertir a array 1D para facil acceso

# Asumir que el grid es regular

num_points = int(ap.sqrt(
error_datalerror_data["time"] == times[0]].shape[0]
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)

# Configuracidén comin para los mapas de calor
plot_kwargs = {
'cmap': 'hot_r',
'shading': 'auto',
'vmin': error_datal['error'].min(),
'vmax': error_datal['error'].max()
}
# Lista para guardar los graficos
abs_errors_pc = []

# Crear los subplots
for i, t_val in enumerate(times):
ax = axes[i]

# Filtrar por tiempo actual
df _t = error_datalerror_data["time"] == t_vall

# Obtener valores y reshape

X_vals = df_t["X"].values.reshape((num_points, num_points))

Y_vals = df_t["Y"].values.reshape((num_points, num_points))
error_vals = df_t["error"].values.reshape((num_points, num_points))

# Crear mapa de calor
pc = ax.pcolormesh(X_vals, Y_vals, error_vals, **plot_kwargs)

# Configuracidén de ejes
ax.set_title(f"Tiempo = {t_val:.2f}", pad=10)
ax.set_xlabel ("X")

ax.set_ylabel("Y")

ax.set_aspect('equal')

abs_errors_pc.append(pc)
cbar = fig.colorbar(abs_errors_pc[-1], ax=axes,
use_gridspec=True, shrink=0.9,
aspect=90, pad=0.1, orientation='horizontal')
cbar.set_label ('Error absoluto []')

# Mostrar el grafico
plt.show()
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Figura 14.6.: Errores absolutos entre el modelo y la solucién analitica para cada tiempo.

Los mapas de error absoluto Figura 14.5 y Figura 14.6 permiten localizar espacialmente
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las discrepancias. Se observa que los mayores errores se concentran en la region de
x = 1, donde la condicién de Neumann no homogénea introduce mayores exigencias en la
aproximacion. Esta distribucién del error es coherente con el comportamiento reportado
en la literatura para problemas con condiciones de frontera variables en el tiempo.
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15. Conclusiones

El presente trabajo ha abordado la complejidad de resolver una ecuacién diferencial
parcial dependiente del tiempo en dos dimensiones espaciales a través de una red neuronal
con la arquitectura DeepONet, asimismo se obtuvieron predicciones para el cuadrado
de [0,1] x [0,1]. Los hiperpardmetros de la red se fueron variando para obtener la
mejor configuracién, usando como base los resultados obtenidos por Alessio Borgi (2023).
Los resultados obtenidos mediante la comparaciéon con el método de Crank Nicolson
demostraron que la red neuronal DeepONet se aproxima eficientemente, pues el MAE
se mantuvo entre 1.3% y 7%, con un valor maximo de 18.2% en el MaxAE Tabla 14.1.
Complementando a los resultados previos, al comparar con la solucién analitica, el MAE
méximo fué de 6.8% y un MaxAE de 18% Tabla 14.2.

Los errores obtenidos demuestran la eficacia del modelo para converger a la condiciéon
inicial, pues tal como se aprecia en las figuras 14.5 y 14.6, a medida que la ecuacién
evoluciona en el tiempo, las predicciones entre el método de Crank Nicolson y la red
neuronal divergen, esto es conforme evoluciona la funcién, vemos que cada vez se aleja
mas del valor real. Valdria la pena en otro trabajo comparar la solucién con otro método
ntamerico clasico para observar si se presenta el mismo comportamiento.

Lo anterior evidencia el potencial que tiene las PINNs como herramienta auxiliar en la
solucién de ecuaciones diferenciales parciales, pues solo a través de la definicion de la
geometria y el espacio temporal (si es necesario) junto con algunos puntos en el dominio
y las condiciones iniciales y de frontera probarén predecir de forma muy acertada el
conjunto de prueba. Una situacién que es comiin en el ambito cientifico, es la de no
siempre contar con una base de datos extensa y libre de ruido con la que entrenar a un
modelo, lo que le otortga a las PINNs una gran ventaja respecto a los modelos de Deep
learning que necesitan una gran cantidad de datos para poder ser entrenados (George
Em Karniadakis 2021).

Complementado a las PINNs, que predicen soluciones especificas para condiciones fijas;
la arquitectura DeepONet aprende operadores (mapeos entre espacios de funciones)
en lugar de solo aproximar funciones, lo que le otorga la capacidad de generalizar a
nuevas condiciones iniciales y de frontera sin reentrenamiento, gracias a su estructura de
red dual (branch-trunk). Esto lo hace ideal para aplicaciones en tiempo real, como la
hipertermia, donde las caracteristicas del problema son suceptibles a cambios, como lo son
las propiedades del cuerpo humano que varian en cada paciente. Un problema clave que
se encontré es que al tener una estructura mas compleja, los tiempos de entrenamiento
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respectos a las PINNs son mayores, sin embargo esto se ve bien compensado por su alta
capacidad de adaptabilidad a nuevas condiciones ya sean iniciales o de frontera.

La creacion de éste tipo de modelos, tanto PINNs clasicas como DeepONets se puede ver
obstaculizada por el conocimiento en programacion del investigador o estudiante que se
plantee programarlos. Si bien, tanto en el ambito cientifico como en la programacion
el pensamiento critico, seguimiento légico y abstraccion de los problemas son pilares
fundamentales; también es necesario familiarizarse con las librerias que implementan
éste tipo de modelos, ademas es bastante recomendado tener una nocién béasica de
como funciona una red neuronal y las partes que la componen. Lo anterior implica una
inversién de tiempo y esfuerzo por parte de los interesados, cosa que cuando se lleva a
cabo un experiemento o investigacion no siempre es posible. Si bien éstas herramientas
son bastante fascinantes y con mucho potencial, como cualquier nueva habilidad hay que
practicar su uso para obtener resultados que valgan la pena.

Cabe mencionar que las aplicaciones de las PINNs son tan amplias como lo es en si
en campo de las PDEs, si nos centramos en la hipertermia, la cual busca elevar la
temperatura en tejidos tumorales (39-45°C), nos topamos con que predecir la distribucién
térmica en tiempo real es un desafio méas complejo de lo que parece en un inicio, hay varias
formas de caracterizar la temperatura en un cuerpo bioldgico, sin contar que las multiples
varibales que componen el fenémeno cambian dependiendo del individuo. Por ello, las
redes neuronales, especialmente DeepONet por su capacidad de generalizacién, permiten
aproximar la temperatura bajo distintas condiciones, optimizando la dosificacién de calor
y minimizando dafios a tejidos sanos. Esto facilita terapias personalizadas y no invasivas,
mejorando la eficacia clinica.
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16. Futuros trabajos de investigacion

De cara al futuro, es planteable explorar ramas alternas de la metodologia usada en
ciertos aspectos, como lo son: - Ajustar la configuracién del optimizador L-BFGS ya sea
aumentando o disminuyendo sus iteraciones méaximas, su umbral de tolerancia o maximo
numero de funciones a evaluar.

o Utilizar el médulo de callbacks para hacer un earlyStopping del modelo para evitar
un sobreajuste.

e Utilizar un conjunto de validacién con datos reales tomados de una sesién de
hipertérmia.

o Utilizar otro método numérico para comparar el modelo, como puede ser diferencias
finitas.

e Comparar otras librerfas en Python que implementen PINNs como lo son SimNet,
PyDEns, NeuroDiffEq o SciANN.

e Comparar con otros lengujes de programacién como lo es Julia, librerias que
implementen PINNs como lo son NeuralPDE o ADCME.
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